理解软件进化:海量数据集

B. Baldassari, P. Preux
{"title":"理解软件进化:海量数据集","authors":"B. Baldassari, P. Preux","doi":"10.1145/2597073.2597136","DOIUrl":null,"url":null,"abstract":"Software engineering is a maturing discipline which has seen many drastic advances in the last years. However, some studies still point to the lack of rigorous and mathematically grounded methods to raise the field to a new emerging science, with proper and reproducible foundations to build upon. Indeed, mathematicians and statisticians do not necessarily have software engineering knowledge, while software engineers and practitioners do not necessarily have a mathematical background. \n The Maisqual research project intends to fill the gap between both fields by proposing a controlled and peer-reviewed data set series ready to use and study. These data sets feature metrics from different repositories, from source code to mail activity and configuration management meta data. Metrics are described and commented, and all the steps followed for their extraction and treatment are described with contextual information about the data and its meaning. \n This article introduces the Apache Ant weekly data set, featuring 636 extracts of the project over 12 years at different levels of artefacts – application, files, functions. By associating community and process related information to code extracts, this data set unveils interesting perspectives on the evolution of one of the great success stories of open source.","PeriodicalId":6621,"journal":{"name":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","volume":"41 1","pages":"424-427"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Understanding software evolution: the maisqual ant data set\",\"authors\":\"B. Baldassari, P. Preux\",\"doi\":\"10.1145/2597073.2597136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software engineering is a maturing discipline which has seen many drastic advances in the last years. However, some studies still point to the lack of rigorous and mathematically grounded methods to raise the field to a new emerging science, with proper and reproducible foundations to build upon. Indeed, mathematicians and statisticians do not necessarily have software engineering knowledge, while software engineers and practitioners do not necessarily have a mathematical background. \\n The Maisqual research project intends to fill the gap between both fields by proposing a controlled and peer-reviewed data set series ready to use and study. These data sets feature metrics from different repositories, from source code to mail activity and configuration management meta data. Metrics are described and commented, and all the steps followed for their extraction and treatment are described with contextual information about the data and its meaning. \\n This article introduces the Apache Ant weekly data set, featuring 636 extracts of the project over 12 years at different levels of artefacts – application, files, functions. By associating community and process related information to code extracts, this data set unveils interesting perspectives on the evolution of one of the great success stories of open source.\",\"PeriodicalId\":6621,\"journal\":{\"name\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"volume\":\"41 1\",\"pages\":\"424-427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2597073.2597136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/ACM 13th Working Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2597073.2597136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

软件工程是一门成熟的学科,在过去的几年里取得了巨大的进步。然而,一些研究仍然指出,缺乏严谨的、以数学为基础的方法来将这一领域提升为一门新兴的科学,并在其上建立适当的、可重复的基础。事实上,数学家和统计学家不一定有软件工程知识,而软件工程师和实践者不一定有数学背景。Maisqual的研究项目打算通过提出一个受控的和同行评审的数据集系列来填补这两个领域之间的空白,以便于使用和研究。这些数据集具有来自不同存储库的指标,从源代码到邮件活动和配置管理元数据。对指标进行了描述和注释,并使用有关数据及其含义的上下文信息描述了提取和处理指标所遵循的所有步骤。本文介绍了Apache Ant每周数据集,其中包含了12年来该项目在不同层次的工件(应用程序、文件、函数)上的636个摘要。通过将社区和流程相关信息与代码摘录相关联,该数据集揭示了关于开源的一个伟大成功故事的演变的有趣视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Understanding software evolution: the maisqual ant data set
Software engineering is a maturing discipline which has seen many drastic advances in the last years. However, some studies still point to the lack of rigorous and mathematically grounded methods to raise the field to a new emerging science, with proper and reproducible foundations to build upon. Indeed, mathematicians and statisticians do not necessarily have software engineering knowledge, while software engineers and practitioners do not necessarily have a mathematical background. The Maisqual research project intends to fill the gap between both fields by proposing a controlled and peer-reviewed data set series ready to use and study. These data sets feature metrics from different repositories, from source code to mail activity and configuration management meta data. Metrics are described and commented, and all the steps followed for their extraction and treatment are described with contextual information about the data and its meaning. This article introduces the Apache Ant weekly data set, featuring 636 extracts of the project over 12 years at different levels of artefacts – application, files, functions. By associating community and process related information to code extracts, this data set unveils interesting perspectives on the evolution of one of the great success stories of open source.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MSR '20: 17th International Conference on Mining Software Repositories, Seoul, Republic of Korea, 29-30 June, 2020 Who you gonna call?: analyzing web requests in Android applications Cena słońca w projektowaniu architektonicznym Multi-extract and Multi-level Dataset of Mozilla Issue Tracking History Interactive Exploration of Developer Interaction Traces using a Hidden Markov Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1