{"title":"猴嗅内、嗅周和海马旁皮层的神经解剖学:皮层输入的组织及其与杏仁核和纹状体的相互联系","authors":"Wendy A. Suzuki","doi":"10.1006/smns.1996.0002","DOIUrl":null,"url":null,"abstract":"<div><p>Experimental lesion studies in monkeys have demonstrated that the cortical areas surrounding the hippocampus, including the entorhinal, perirhinal and parahippocampal cortices play an important role in declarative memory (i.e. memory for facts and events). A series of neuroanatomical studies, motivated in part by the lesion studies, have shown that the macaque monkey entorhinal, perirhinal and parahippocampal cortices are polymodal association areas that each receive distinctive complements of cortical inputs. These areas also have extensive interconnections with other brain areas implicated in non-declarative forms of memory including the amygdala and striatum. This pattern of connections is consistent with the idea that the entorhinal, perirhinal and parahippocampal cortices may participate in a larger network of structures that integrates information across memory systems.</p></div>","PeriodicalId":101157,"journal":{"name":"Seminars in Neuroscience","volume":"8 1","pages":"Pages 3-12"},"PeriodicalIF":0.0000,"publicationDate":"1996-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1006/smns.1996.0002","citationCount":"148","resultStr":"{\"title\":\"Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum\",\"authors\":\"Wendy A. Suzuki\",\"doi\":\"10.1006/smns.1996.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Experimental lesion studies in monkeys have demonstrated that the cortical areas surrounding the hippocampus, including the entorhinal, perirhinal and parahippocampal cortices play an important role in declarative memory (i.e. memory for facts and events). A series of neuroanatomical studies, motivated in part by the lesion studies, have shown that the macaque monkey entorhinal, perirhinal and parahippocampal cortices are polymodal association areas that each receive distinctive complements of cortical inputs. These areas also have extensive interconnections with other brain areas implicated in non-declarative forms of memory including the amygdala and striatum. This pattern of connections is consistent with the idea that the entorhinal, perirhinal and parahippocampal cortices may participate in a larger network of structures that integrates information across memory systems.</p></div>\",\"PeriodicalId\":101157,\"journal\":{\"name\":\"Seminars in Neuroscience\",\"volume\":\"8 1\",\"pages\":\"Pages 3-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1006/smns.1996.0002\",\"citationCount\":\"148\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044576596900020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044576596900020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Neuroanatomy of the monkey entorhinal, perirhinal and parahippocampal cortices: Organization of cortical inputs and interconnections with amygdala and striatum
Experimental lesion studies in monkeys have demonstrated that the cortical areas surrounding the hippocampus, including the entorhinal, perirhinal and parahippocampal cortices play an important role in declarative memory (i.e. memory for facts and events). A series of neuroanatomical studies, motivated in part by the lesion studies, have shown that the macaque monkey entorhinal, perirhinal and parahippocampal cortices are polymodal association areas that each receive distinctive complements of cortical inputs. These areas also have extensive interconnections with other brain areas implicated in non-declarative forms of memory including the amygdala and striatum. This pattern of connections is consistent with the idea that the entorhinal, perirhinal and parahippocampal cortices may participate in a larger network of structures that integrates information across memory systems.