T. Barakat, Nahed Mahmoud, Ihab A. Ali, Mohamed Hamdi
{"title":"基于隐写和索引密码的安全DNA密码系统","authors":"T. Barakat, Nahed Mahmoud, Ihab A. Ali, Mohamed Hamdi","doi":"10.5121/ijnsa.2022.14104","DOIUrl":null,"url":null,"abstract":"One of the essential challenges nowadays; is how to secure data with the increase of its volume as well as its transmission rate. The most frequent approach used to give a high degree of protection, preserve data from hackers, and accomplish multilayer security is steganography combined with encryption. DNA (Deoxyribonucleic Acid) is considered as a new promising carrier for data security while achieving powerful security and maximum protection. In this paper, a secure DNA cryptosystem model which combines steganography with encryption is introduced and categorized into two layers. The original data are hidden in the first layer into a reference DNA based on the insertion method to obtain a fake DNA sequence. In the second layer, this fake DNA sequence, which is the first layer's output, is encrypted using an indexing cipher to produce an encrypted message in the form of indexes. The proposed model guarantees multilayer security to the secret data with high performance and low-time wasting. It addresses the long-generation key problem of the DNA cryptography. The experimental results assess and validate the theoretical security analysis and model performance.","PeriodicalId":93303,"journal":{"name":"International journal of network security & its applications","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Secure DNA Cryptosystem based on Steganography and Indexing Cipher\",\"authors\":\"T. Barakat, Nahed Mahmoud, Ihab A. Ali, Mohamed Hamdi\",\"doi\":\"10.5121/ijnsa.2022.14104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the essential challenges nowadays; is how to secure data with the increase of its volume as well as its transmission rate. The most frequent approach used to give a high degree of protection, preserve data from hackers, and accomplish multilayer security is steganography combined with encryption. DNA (Deoxyribonucleic Acid) is considered as a new promising carrier for data security while achieving powerful security and maximum protection. In this paper, a secure DNA cryptosystem model which combines steganography with encryption is introduced and categorized into two layers. The original data are hidden in the first layer into a reference DNA based on the insertion method to obtain a fake DNA sequence. In the second layer, this fake DNA sequence, which is the first layer's output, is encrypted using an indexing cipher to produce an encrypted message in the form of indexes. The proposed model guarantees multilayer security to the secret data with high performance and low-time wasting. It addresses the long-generation key problem of the DNA cryptography. The experimental results assess and validate the theoretical security analysis and model performance.\",\"PeriodicalId\":93303,\"journal\":{\"name\":\"International journal of network security & its applications\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of network security & its applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijnsa.2022.14104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of network security & its applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijnsa.2022.14104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Secure DNA Cryptosystem based on Steganography and Indexing Cipher
One of the essential challenges nowadays; is how to secure data with the increase of its volume as well as its transmission rate. The most frequent approach used to give a high degree of protection, preserve data from hackers, and accomplish multilayer security is steganography combined with encryption. DNA (Deoxyribonucleic Acid) is considered as a new promising carrier for data security while achieving powerful security and maximum protection. In this paper, a secure DNA cryptosystem model which combines steganography with encryption is introduced and categorized into two layers. The original data are hidden in the first layer into a reference DNA based on the insertion method to obtain a fake DNA sequence. In the second layer, this fake DNA sequence, which is the first layer's output, is encrypted using an indexing cipher to produce an encrypted message in the form of indexes. The proposed model guarantees multilayer security to the secret data with high performance and low-time wasting. It addresses the long-generation key problem of the DNA cryptography. The experimental results assess and validate the theoretical security analysis and model performance.