基于多鉴别器生成对抗网络的图像自动着色

Youssef Mourchid, M. Donias, Y. Berthoumieu
{"title":"基于多鉴别器生成对抗网络的图像自动着色","authors":"Youssef Mourchid, M. Donias, Y. Berthoumieu","doi":"10.23919/Eusipco47968.2020.9287792","DOIUrl":null,"url":null,"abstract":"This paper presents a deep automatic colorization approach which avoids any manual intervention. Recently Generative Adversarial Network (GANs) approaches have proven their effectiveness for image colorization tasks. Inspired by GANs methods, we propose a novel colorization model that produces more realistic quality results. The model employs an additional discriminator which works in the feature domain. Using a feature discriminator, our generator produces structural high-frequency features instead of noisy artifacts. To achieve the required level of details in the colorization process, we incorporate non-adversarial losses from recent image style transfer techniques. Besides, the generator architecture follows the general shape of U-Net, to transfer information more effectively between distant layers. The performance of the proposed model was evaluated quantitatively as well as qualitatively with places365 dataset. Results show that the proposed model achieves more realistic colors with less artifacts compared to the state-of-the-art approaches.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"23 1","pages":"1532-1536"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Image Colorization based on Multi-Discriminators Generative Adversarial Networks\",\"authors\":\"Youssef Mourchid, M. Donias, Y. Berthoumieu\",\"doi\":\"10.23919/Eusipco47968.2020.9287792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a deep automatic colorization approach which avoids any manual intervention. Recently Generative Adversarial Network (GANs) approaches have proven their effectiveness for image colorization tasks. Inspired by GANs methods, we propose a novel colorization model that produces more realistic quality results. The model employs an additional discriminator which works in the feature domain. Using a feature discriminator, our generator produces structural high-frequency features instead of noisy artifacts. To achieve the required level of details in the colorization process, we incorporate non-adversarial losses from recent image style transfer techniques. Besides, the generator architecture follows the general shape of U-Net, to transfer information more effectively between distant layers. The performance of the proposed model was evaluated quantitatively as well as qualitatively with places365 dataset. Results show that the proposed model achieves more realistic colors with less artifacts compared to the state-of-the-art approaches.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"23 1\",\"pages\":\"1532-1536\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287792\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种避免人工干预的深度自动着色方法。近年来,生成对抗网络(GANs)方法已经证明了其在图像着色任务中的有效性。受gan方法的启发,我们提出了一种新的着色模型,可以产生更逼真的质量结果。该模型采用了一个附加的识别器,该识别器在特征域中工作。使用特征鉴别器,我们的生成器产生结构性高频特征,而不是噪声伪影。为了在着色过程中达到所需的细节水平,我们从最近的图像风格转移技术中纳入了非对抗性损失。此外,发生器架构遵循U-Net的一般形状,以便在远距离层之间更有效地传输信息。使用places365数据集对所提出模型的性能进行了定量和定性评估。结果表明,与最先进的方法相比,所提出的模型实现了更真实的颜色和更少的伪影。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Image Colorization based on Multi-Discriminators Generative Adversarial Networks
This paper presents a deep automatic colorization approach which avoids any manual intervention. Recently Generative Adversarial Network (GANs) approaches have proven their effectiveness for image colorization tasks. Inspired by GANs methods, we propose a novel colorization model that produces more realistic quality results. The model employs an additional discriminator which works in the feature domain. Using a feature discriminator, our generator produces structural high-frequency features instead of noisy artifacts. To achieve the required level of details in the colorization process, we incorporate non-adversarial losses from recent image style transfer techniques. Besides, the generator architecture follows the general shape of U-Net, to transfer information more effectively between distant layers. The performance of the proposed model was evaluated quantitatively as well as qualitatively with places365 dataset. Results show that the proposed model achieves more realistic colors with less artifacts compared to the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1