第14章。维生素E的代谢

R. Brigelius-Flohé
{"title":"第14章。维生素E的代谢","authors":"R. Brigelius-Flohé","doi":"10.1039/9781788016216-00189","DOIUrl":null,"url":null,"abstract":"Almost 100 years after the detection of vitamin E, its biological function is still waiting to be identified. The postulated function of an antioxidant is obviously not the only one. All forms of vitamin E have a chromanol structure and a 13-carbon-long side chain. The first degradation products to be found pointed to an oxidative opening of the chromanol structure, which supported the antioxidant theory. However, in all more recently analyzed metabolites, the chromanol ring is intact, which does not point to an oxidative action. The start of degradation is catalyzed by enzymes of the CYP system with two preferential ones: CYP3A4 and CYP4F2. CYP3A4 obviously acts preferentially on α-tocopherol, whereas CYP4F2 appears to preferentially degrade non-α-forms. Non-α-forms are metabolized fast, α-tocopherol only if present in excess. Both CYPs can be up-regulated, but differ in the response to different vitamin E forms. Detailed studies of the functions of individual metabolites are needed since they are appearing to turn out to be a new class of regulatory signaling molecules.","PeriodicalId":23674,"journal":{"name":"Vitamin E","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"CHAPTER 14. Metabolism of Vitamin E\",\"authors\":\"R. Brigelius-Flohé\",\"doi\":\"10.1039/9781788016216-00189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Almost 100 years after the detection of vitamin E, its biological function is still waiting to be identified. The postulated function of an antioxidant is obviously not the only one. All forms of vitamin E have a chromanol structure and a 13-carbon-long side chain. The first degradation products to be found pointed to an oxidative opening of the chromanol structure, which supported the antioxidant theory. However, in all more recently analyzed metabolites, the chromanol ring is intact, which does not point to an oxidative action. The start of degradation is catalyzed by enzymes of the CYP system with two preferential ones: CYP3A4 and CYP4F2. CYP3A4 obviously acts preferentially on α-tocopherol, whereas CYP4F2 appears to preferentially degrade non-α-forms. Non-α-forms are metabolized fast, α-tocopherol only if present in excess. Both CYPs can be up-regulated, but differ in the response to different vitamin E forms. Detailed studies of the functions of individual metabolites are needed since they are appearing to turn out to be a new class of regulatory signaling molecules.\",\"PeriodicalId\":23674,\"journal\":{\"name\":\"Vitamin E\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vitamin E\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016216-00189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamin E","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016216-00189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在维生素E被发现近100年后,它的生物学功能仍有待确定。抗氧化剂的假设功能显然不是唯一的。所有形式的维生素E都有一个铬醇结构和一个13碳长的侧链。第一个被发现的降解产物指向了铬醇结构的氧化开口,这支持了抗氧化理论。然而,在最近分析的所有代谢物中,铬醇环是完整的,这并不意味着氧化作用。降解的开始是由CYP系统的酶催化的,有两个优先的酶:CYP3A4和CYP4F2。CYP3A4明显优先作用于α-生育酚,而CYP4F2则优先降解非α-生育酚。非α-形式代谢快,α-生育酚只有在过量存在时才会被代谢。这两种CYPs都可以上调,但对不同维生素E形式的反应不同。对单个代谢物的功能进行详细的研究是必要的,因为它们似乎是一类新的调节信号分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHAPTER 14. Metabolism of Vitamin E
Almost 100 years after the detection of vitamin E, its biological function is still waiting to be identified. The postulated function of an antioxidant is obviously not the only one. All forms of vitamin E have a chromanol structure and a 13-carbon-long side chain. The first degradation products to be found pointed to an oxidative opening of the chromanol structure, which supported the antioxidant theory. However, in all more recently analyzed metabolites, the chromanol ring is intact, which does not point to an oxidative action. The start of degradation is catalyzed by enzymes of the CYP system with two preferential ones: CYP3A4 and CYP4F2. CYP3A4 obviously acts preferentially on α-tocopherol, whereas CYP4F2 appears to preferentially degrade non-α-forms. Non-α-forms are metabolized fast, α-tocopherol only if present in excess. Both CYPs can be up-regulated, but differ in the response to different vitamin E forms. Detailed studies of the functions of individual metabolites are needed since they are appearing to turn out to be a new class of regulatory signaling molecules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CHAPTER 11. Vitamin E Inspired Synthetic Antioxidants CHAPTER 9. Lipid Peroxidation: Role of Vitamin E CHAPTER 12. Action of Vitamin E Against Lipid Peroxidation and Cell Death CHAPTER 14. Metabolism of Vitamin E CHAPTER 13. Oxidation Products of Vitamin E with Lipid-derived Free Radicals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1