{"title":"相互作用费米子的自旋选择性激发形成的空间模式","authors":"T. Köhler, S. Paeckel, C. Meyer, S. Manmana","doi":"10.1103/physrevb.102.235166","DOIUrl":null,"url":null,"abstract":"We describe the formation of charge- and spin-density patterns induced by spin-selective photoexcitations of interacting fermionic systems in the presence of a microstructure. As an example, we consider a one-dimensional Hubbard-like system with a periodic magnetic microstructure, which has a uniform charge distribution in its ground state, and in which a long-lived charge-density pattern is induced by the spin-selective photoexcitation. Using tensor-network methods, we study the full quantum dynamics in the presence of electron-electron interactions and identify doublons as main decay channel for the induced charge pattern. Our setup is compared to the OISTR mechanism, in which ultrafast optically induced spin-transfer in Heusler and magnetic compounds is associated to the difference of the local density of states of the different elements in the alloys. We find that applying a spin-selective excitation there induces spatially periodic patterns in local observables. Implications for pump-probe experiments on correlated materials and experiments with ultracold gases on optical lattices are discussed.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Formation of spatial patterns by spin-selective excitations of interacting fermions\",\"authors\":\"T. Köhler, S. Paeckel, C. Meyer, S. Manmana\",\"doi\":\"10.1103/physrevb.102.235166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the formation of charge- and spin-density patterns induced by spin-selective photoexcitations of interacting fermionic systems in the presence of a microstructure. As an example, we consider a one-dimensional Hubbard-like system with a periodic magnetic microstructure, which has a uniform charge distribution in its ground state, and in which a long-lived charge-density pattern is induced by the spin-selective photoexcitation. Using tensor-network methods, we study the full quantum dynamics in the presence of electron-electron interactions and identify doublons as main decay channel for the induced charge pattern. Our setup is compared to the OISTR mechanism, in which ultrafast optically induced spin-transfer in Heusler and magnetic compounds is associated to the difference of the local density of states of the different elements in the alloys. We find that applying a spin-selective excitation there induces spatially periodic patterns in local observables. Implications for pump-probe experiments on correlated materials and experiments with ultracold gases on optical lattices are discussed.\",\"PeriodicalId\":8511,\"journal\":{\"name\":\"arXiv: Strongly Correlated Electrons\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Strongly Correlated Electrons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevb.102.235166\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/physrevb.102.235166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formation of spatial patterns by spin-selective excitations of interacting fermions
We describe the formation of charge- and spin-density patterns induced by spin-selective photoexcitations of interacting fermionic systems in the presence of a microstructure. As an example, we consider a one-dimensional Hubbard-like system with a periodic magnetic microstructure, which has a uniform charge distribution in its ground state, and in which a long-lived charge-density pattern is induced by the spin-selective photoexcitation. Using tensor-network methods, we study the full quantum dynamics in the presence of electron-electron interactions and identify doublons as main decay channel for the induced charge pattern. Our setup is compared to the OISTR mechanism, in which ultrafast optically induced spin-transfer in Heusler and magnetic compounds is associated to the difference of the local density of states of the different elements in the alloys. We find that applying a spin-selective excitation there induces spatially periodic patterns in local observables. Implications for pump-probe experiments on correlated materials and experiments with ultracold gases on optical lattices are discussed.