{"title":"Me2Si=Sn:与乙烯的环加成反应生成si - spro -Sn-杂环化合物机理的从头算研究","authors":"Xiaojun Tan, Xiuhui Lu","doi":"10.1177/1468678319825898","DOIUrl":null,"url":null,"abstract":"X2Si=Sn: (X = H, Me, F, Cl, Br, Ph, Ar, etc.) are a new chemical species. The cycloaddition reactions of X2Si=Sn: are a new field of stannylene chemistry. The mechanism of the cycloaddition reaction between singlet state Me2Si=Sn: and ethene has been investigated for the first time here using second-order Møller-Plesset perturbation theory together with the 6-311++G** basis set for C, H and Si atoms and the LanL2dz basis set for Sn atoms. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction process presented is that the 5p unoccupied orbital of Sn in Me2Si=Sn: and the π orbital of ethene form a π → p donor–acceptor bond resulting in the formation of an intermediate. The instability of this intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of the Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethene form a π → p donor–acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in this intermediate assumes sp3 hybridization after the transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. This result indicates the modes of cycloaddition reactions between X2Si=Sn: and symmetric π-bonded compounds, i.e. this study opens up a new field for stannylene chemistry.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ab initio study of mechanism of forming a Si-heterocyclic spiro-Sn-heterocyclic ring compound by cycloaddition reaction of Me2Si=Sn: and ethene\",\"authors\":\"Xiaojun Tan, Xiuhui Lu\",\"doi\":\"10.1177/1468678319825898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X2Si=Sn: (X = H, Me, F, Cl, Br, Ph, Ar, etc.) are a new chemical species. The cycloaddition reactions of X2Si=Sn: are a new field of stannylene chemistry. The mechanism of the cycloaddition reaction between singlet state Me2Si=Sn: and ethene has been investigated for the first time here using second-order Møller-Plesset perturbation theory together with the 6-311++G** basis set for C, H and Si atoms and the LanL2dz basis set for Sn atoms. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction process presented is that the 5p unoccupied orbital of Sn in Me2Si=Sn: and the π orbital of ethene form a π → p donor–acceptor bond resulting in the formation of an intermediate. The instability of this intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of the Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethene form a π → p donor–acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in this intermediate assumes sp3 hybridization after the transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. This result indicates the modes of cycloaddition reactions between X2Si=Sn: and symmetric π-bonded compounds, i.e. this study opens up a new field for stannylene chemistry.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/1468678319825898\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319825898","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Ab initio study of mechanism of forming a Si-heterocyclic spiro-Sn-heterocyclic ring compound by cycloaddition reaction of Me2Si=Sn: and ethene
X2Si=Sn: (X = H, Me, F, Cl, Br, Ph, Ar, etc.) are a new chemical species. The cycloaddition reactions of X2Si=Sn: are a new field of stannylene chemistry. The mechanism of the cycloaddition reaction between singlet state Me2Si=Sn: and ethene has been investigated for the first time here using second-order Møller-Plesset perturbation theory together with the 6-311++G** basis set for C, H and Si atoms and the LanL2dz basis set for Sn atoms. From the potential energy profile, it could be predicted that the reaction has one dominant reaction channel. The reaction process presented is that the 5p unoccupied orbital of Sn in Me2Si=Sn: and the π orbital of ethene form a π → p donor–acceptor bond resulting in the formation of an intermediate. The instability of this intermediate makes it isomerize to a four-membered Si-heterocyclic ring stannylene. Because the 5p unoccupied orbital of the Sn atom in the four-membered Si-heterocyclic ring stannylene and the π orbital of ethene form a π → p donor–acceptor bond, the four-membered Si-heterocyclic ring stannylene further combines with ethene to form another intermediate. Because the Sn atom in this intermediate assumes sp3 hybridization after the transition state, the intermediate isomerizes to a Si-heterocyclic spiro-Sn-heterocyclic ring compound. This result indicates the modes of cycloaddition reactions between X2Si=Sn: and symmetric π-bonded compounds, i.e. this study opens up a new field for stannylene chemistry.