基于压缩测量的红外视频深度学习目标跟踪与分类

C. Kwan, Bryan Chou, Jonathan Yang, T. Tran
{"title":"基于压缩测量的红外视频深度学习目标跟踪与分类","authors":"C. Kwan, Bryan Chou, Jonathan Yang, T. Tran","doi":"10.4236/jsip.2019.104010","DOIUrl":null,"url":null,"abstract":"Although compressive measurements save data storage \nand bandwidth usage, they are difficult to be used directly for target tracking \nand classification without pixel reconstruction. This is because the Gaussian \nrandom matrix destroys the target location information in the original video \nframes. This paper summarizes our research effort on target tracking and \nclassification directly in the compressive measurement domain. We focus on one \nparticular type of compressive measurement using pixel subsampling. That is, \noriginal pixels in video frames are randomly subsampled. Even in such a special \ncompressive sensing setting, conventional trackers do not work in a \nsatisfactory manner. We propose a deep learning approach that integrates YOLO \n(You Only Look Once) and ResNet (residual network) for multiple target tracking \nand classification. YOLO is used for multiple target tracking and ResNet is for \ntarget classification. Extensive experiments using short wave infrared (SWIR), \nmid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the \nefficacy of the proposed approach even though the training data are very \nscarce.","PeriodicalId":38474,"journal":{"name":"Journal of Information Hiding and Multimedia Signal Processing","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Deep Learning Based Target Tracking and Classification for Infrared Videos Using Compressive Measurements\",\"authors\":\"C. Kwan, Bryan Chou, Jonathan Yang, T. Tran\",\"doi\":\"10.4236/jsip.2019.104010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although compressive measurements save data storage \\nand bandwidth usage, they are difficult to be used directly for target tracking \\nand classification without pixel reconstruction. This is because the Gaussian \\nrandom matrix destroys the target location information in the original video \\nframes. This paper summarizes our research effort on target tracking and \\nclassification directly in the compressive measurement domain. We focus on one \\nparticular type of compressive measurement using pixel subsampling. That is, \\noriginal pixels in video frames are randomly subsampled. Even in such a special \\ncompressive sensing setting, conventional trackers do not work in a \\nsatisfactory manner. We propose a deep learning approach that integrates YOLO \\n(You Only Look Once) and ResNet (residual network) for multiple target tracking \\nand classification. YOLO is used for multiple target tracking and ResNet is for \\ntarget classification. Extensive experiments using short wave infrared (SWIR), \\nmid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the \\nefficacy of the proposed approach even though the training data are very \\nscarce.\",\"PeriodicalId\":38474,\"journal\":{\"name\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Information Hiding and Multimedia Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jsip.2019.104010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Hiding and Multimedia Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jsip.2019.104010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 18

摘要

压缩测量虽然节省了数据存储和带宽使用,但如果不进行像素重建,则难以直接用于目标跟踪和分类。这是因为高斯随机矩阵破坏了原始视频帧中的目标位置信息。本文总结了压缩测量领域中目标跟踪与分类的研究成果。我们专注于使用像素子采样的一种特殊类型的压缩测量。也就是说,视频帧中的原始像素被随机抽样。即使在这种特殊的压缩感知设置中,传统的跟踪器也不能以令人满意的方式工作。我们提出了一种集成YOLO (You Only Look Once)和ResNet(残差网络)的深度学习方法,用于多目标跟踪和分类。YOLO用于多目标跟踪,ResNet用于目标分类。大量使用短波红外(SWIR)、中波红外(MWIR)和长波红外(LWIR)视频的实验证明了该方法的有效性,尽管训练数据非常稀缺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Based Target Tracking and Classification for Infrared Videos Using Compressive Measurements
Although compressive measurements save data storage and bandwidth usage, they are difficult to be used directly for target tracking and classification without pixel reconstruction. This is because the Gaussian random matrix destroys the target location information in the original video frames. This paper summarizes our research effort on target tracking and classification directly in the compressive measurement domain. We focus on one particular type of compressive measurement using pixel subsampling. That is, original pixels in video frames are randomly subsampled. Even in such a special compressive sensing setting, conventional trackers do not work in a satisfactory manner. We propose a deep learning approach that integrates YOLO (You Only Look Once) and ResNet (residual network) for multiple target tracking and classification. YOLO is used for multiple target tracking and ResNet is for target classification. Extensive experiments using short wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR) videos demonstrated the efficacy of the proposed approach even though the training data are very scarce.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Variational Mode Decomposition for Bearing Fault Detection White Blood Cells Detection Using Spectral Tresholding 3D Ergonomic Board: Kids Teaching and Learning Proposition Design and Evaluation of a Distributed Security Framework for the Internet of Things Improved Bearing Fault Diagnosis by Feature Extraction Based on GLCM, Fusion of Selection Methods, and Multiclass-Naïve Bayes Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1