基于多尺度信息融合的纹理分类研究

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Advanced Computational Intelligence and Intelligent Informatics Pub Date : 2023-03-20 DOI:10.20965/jaciii.2023.p0207
Lin Wang, Lihong Li, Yaya Su
{"title":"基于多尺度信息融合的纹理分类研究","authors":"Lin Wang, Lihong Li, Yaya Su","doi":"10.20965/jaciii.2023.p0207","DOIUrl":null,"url":null,"abstract":"Texture feature is an important visual cue for an image, which is the unified description of human visual attributes and sensory attributes. The inherent problem of texture image is that the difference of intra-class images is large and the disparity of inter-class images is small. This problem increases the difficulty of texture image recognition. Therefore, improving the relevance embedding of intra-class images can reduce the classification errors caused by this problem. To solve this problem, this paper proposes a multi-scale information fusion network algorithm, which adopts a cascade structure. It combines multi-scale feature information with the corresponding background information. The shallow background information guides the next stage of feature formation and enhances the similarity of intra-class images. The intra-class feature information obtained is more general. The algorithm has been tested on data sets describable texture database (DTD) and Flickr material dataset (FMD), which has achieved good results.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"41 1","pages":"207-214"},"PeriodicalIF":0.7000,"publicationDate":"2023-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Texture Classification Based on Multi-Scale Information Fusion\",\"authors\":\"Lin Wang, Lihong Li, Yaya Su\",\"doi\":\"10.20965/jaciii.2023.p0207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Texture feature is an important visual cue for an image, which is the unified description of human visual attributes and sensory attributes. The inherent problem of texture image is that the difference of intra-class images is large and the disparity of inter-class images is small. This problem increases the difficulty of texture image recognition. Therefore, improving the relevance embedding of intra-class images can reduce the classification errors caused by this problem. To solve this problem, this paper proposes a multi-scale information fusion network algorithm, which adopts a cascade structure. It combines multi-scale feature information with the corresponding background information. The shallow background information guides the next stage of feature formation and enhances the similarity of intra-class images. The intra-class feature information obtained is more general. The algorithm has been tested on data sets describable texture database (DTD) and Flickr material dataset (FMD), which has achieved good results.\",\"PeriodicalId\":45921,\"journal\":{\"name\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"volume\":\"41 1\",\"pages\":\"207-214\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Computational Intelligence and Intelligent Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jaciii.2023.p0207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

纹理特征是图像重要的视觉线索,是人类视觉属性和感官属性的统一描述。纹理图像固有的问题是类内图像差异大,类间图像差异小。这个问题增加了纹理图像识别的难度。因此,改进类内图像的相关嵌入可以减少这一问题带来的分类误差。为了解决这一问题,本文提出了一种采用级联结构的多尺度信息融合网络算法。它将多尺度特征信息与相应的背景信息相结合。浅层背景信息指导下一阶段的特征形成,增强类内图像的相似性。获得的类内特征信息更加通用。该算法在可描述纹理数据库(DTD)和Flickr材料数据集(FMD)上进行了测试,取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Texture Classification Based on Multi-Scale Information Fusion
Texture feature is an important visual cue for an image, which is the unified description of human visual attributes and sensory attributes. The inherent problem of texture image is that the difference of intra-class images is large and the disparity of inter-class images is small. This problem increases the difficulty of texture image recognition. Therefore, improving the relevance embedding of intra-class images can reduce the classification errors caused by this problem. To solve this problem, this paper proposes a multi-scale information fusion network algorithm, which adopts a cascade structure. It combines multi-scale feature information with the corresponding background information. The shallow background information guides the next stage of feature formation and enhances the similarity of intra-class images. The intra-class feature information obtained is more general. The algorithm has been tested on data sets describable texture database (DTD) and Flickr material dataset (FMD), which has achieved good results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
期刊最新文献
The Impact of Individual Heterogeneity on Household Asset Choice: An Empirical Study Based on China Family Panel Studies Private Placement, Investor Sentiment, and Stock Price Anomaly Does Increasing Public Service Expenditure Slow the Long-Term Economic Growth Rate?—Evidence from China Prediction and Characteristic Analysis of Enterprise Digital Transformation Integrating XGBoost and SHAP Industrial Chain Map and Linkage Network Characteristics of Digital Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1