Ali Moghaddas, Casey Bennett, Emad Rokni, H. Metghalchi
{"title":"二氟甲烷(HFC-32)和1,1-二氟乙烷(HFC-152a)混合物在高温高压下与空气的层流燃烧速度和火焰结构","authors":"Ali Moghaddas, Casey Bennett, Emad Rokni, H. Metghalchi","doi":"10.1080/10789669.2013.822252","DOIUrl":null,"url":null,"abstract":"Laminar burning speeds and flame structures of difluoromethane (HFC-32)/air and 1,1-difluoroethane (HFC-152a)/air mixtures have been studied. Experiments have been carried out in constant-volume spherical and cylindrical vessels coupled with a schlieren/shadowgraph system and high-speed complementary metal-oxide-semiconductor (CMOS) camera. Laminar burning speed was determined using a thermodynamic model that employs the pressure rise history of the combustion process. Experiments were conducted for different initial conditions over a wide range of equivalence ratios. Laminar burning speeds of HFC-152a/air mixtures have been measured over the temperature range of 298 K to 580 K and pressure range of 1 to 8 bar. Laminar burning speeds of HFC-32/air mixtures have been measured for the temperature range of 350 K to 475 K and pressure range of 2 to 6.8 bar. Correlations have been developed for laminar burning speeds of HFC-32 and HFC-152a to demonstrate the temperature and pressure dependency of laminar burning speeds of these two refrigerants.","PeriodicalId":13238,"journal":{"name":"HVAC&R Research","volume":"10 1","pages":"42 - 50"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Laminar burning speeds and flame structures of mixtures of difluoromethane (HFC-32) and 1,1-difluoroethane (HFC-152a) with air at elevated temperatures and pressures\",\"authors\":\"Ali Moghaddas, Casey Bennett, Emad Rokni, H. Metghalchi\",\"doi\":\"10.1080/10789669.2013.822252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laminar burning speeds and flame structures of difluoromethane (HFC-32)/air and 1,1-difluoroethane (HFC-152a)/air mixtures have been studied. Experiments have been carried out in constant-volume spherical and cylindrical vessels coupled with a schlieren/shadowgraph system and high-speed complementary metal-oxide-semiconductor (CMOS) camera. Laminar burning speed was determined using a thermodynamic model that employs the pressure rise history of the combustion process. Experiments were conducted for different initial conditions over a wide range of equivalence ratios. Laminar burning speeds of HFC-152a/air mixtures have been measured over the temperature range of 298 K to 580 K and pressure range of 1 to 8 bar. Laminar burning speeds of HFC-32/air mixtures have been measured for the temperature range of 350 K to 475 K and pressure range of 2 to 6.8 bar. Correlations have been developed for laminar burning speeds of HFC-32 and HFC-152a to demonstrate the temperature and pressure dependency of laminar burning speeds of these two refrigerants.\",\"PeriodicalId\":13238,\"journal\":{\"name\":\"HVAC&R Research\",\"volume\":\"10 1\",\"pages\":\"42 - 50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HVAC&R Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10789669.2013.822252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HVAC&R Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10789669.2013.822252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Laminar burning speeds and flame structures of mixtures of difluoromethane (HFC-32) and 1,1-difluoroethane (HFC-152a) with air at elevated temperatures and pressures
Laminar burning speeds and flame structures of difluoromethane (HFC-32)/air and 1,1-difluoroethane (HFC-152a)/air mixtures have been studied. Experiments have been carried out in constant-volume spherical and cylindrical vessels coupled with a schlieren/shadowgraph system and high-speed complementary metal-oxide-semiconductor (CMOS) camera. Laminar burning speed was determined using a thermodynamic model that employs the pressure rise history of the combustion process. Experiments were conducted for different initial conditions over a wide range of equivalence ratios. Laminar burning speeds of HFC-152a/air mixtures have been measured over the temperature range of 298 K to 580 K and pressure range of 1 to 8 bar. Laminar burning speeds of HFC-32/air mixtures have been measured for the temperature range of 350 K to 475 K and pressure range of 2 to 6.8 bar. Correlations have been developed for laminar burning speeds of HFC-32 and HFC-152a to demonstrate the temperature and pressure dependency of laminar burning speeds of these two refrigerants.