R. Jeughale, K. Andrews, S. A. Al Ali, T. Toki, Hisaya Tanaka, Ryosuke Sato, J. Luzardo, G. Sarap, Saumit Chatterjee, Z. Meki
{"title":"超低密度非水油藏钻井液在阿拉伯联合酋长国的开发和首次应用:一种可行的技术解决方案,可在枯竭油藏上钻出最大油藏接触井","authors":"R. Jeughale, K. Andrews, S. A. Al Ali, T. Toki, Hisaya Tanaka, Ryosuke Sato, J. Luzardo, G. Sarap, Saumit Chatterjee, Z. Meki","doi":"10.2118/207257-ms","DOIUrl":null,"url":null,"abstract":"\n Drilling and completion operations in depleted reservoirs, are challenging due to narrow margin between pore and fracture pressures. Therefore, Ultra-Low Density Reservoir Drilling Fluid (RDF) with optimum parameters is required to drill these wells safely. Design and effective field application of a sound engineered fluid solution to fulfill these operational demands are described.\n Ultra-Low Density RDF NAF with minimal fluid invasion characteristics was developed after extensive lab testing, to cover the fluid density from 7.2 – 8.0 ppg. The fluid properties were optimized based on reservoir requirements and challenging bottom-hole conditions. The design criteria benchmarks and field application details are presented. Fluids were stress tested for drill solids, reservoir water and density increase contamination. Multi-segment collaboration and teamwork were key during job planning and on-site job execution, to achieve operational success.\n For the first time in UAE, a major Offshore Operator successfully applied an Ultra-Low Density RDF-NAF, which provided remarkable stability and performance. The fluid was tested in the lab with polymeric viscosifier alone and in combination with organophilic clay. In order to gain rheology during the initial mixing, about 3.0 ppb of organophilic clay were introduced to system along with the polymeric viscosifier. Later, all the new fluid batches were built with polymeric additives alone to achieve target properties. A total of 10,250 ft of 8 ½\" horizontal section was drilled to section TD with record ROP compared to previous wells in the same field, with no fluids related complications. With limited support from the solid control equipment, the team managed to keep the density ranging from 7.5 ppg to 7.8 ppg at surface condition, using premixed dilution.\n Bridging was monitored through actual testing on location and successfully maintained the target PSD values throughout the section by splitting the flow on three shaker screen size combination. Due to non-operation related issues, hole was kept static for 20 days. After such long static time, 8 ½\" drilling BHA was run to bottom smoothly precautionary breaking circulation every 5 stands. Finally, after successful logging operation, 6 5/8\" LEL liner was set to TD and the well completed as planned.\n Success of this field application indicates that an Ultra-Low density fluid can be designed, run successfully and deliver exemplary performance. Lessons learned are compared with conceptual design for future optimization. Laboratory test results are presented, which formed the basis of a seamless planned field application.","PeriodicalId":10959,"journal":{"name":"Day 3 Wed, November 17, 2021","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and First Application of an Ultra-Low Density Non-Aqueous Reservoir Drilling Fluid in the United Arab Emirates: A Viable Technical Solution to Drill Maximum Reservoir Contact Wells Across Depleted Reservoirs\",\"authors\":\"R. Jeughale, K. Andrews, S. A. Al Ali, T. Toki, Hisaya Tanaka, Ryosuke Sato, J. Luzardo, G. Sarap, Saumit Chatterjee, Z. Meki\",\"doi\":\"10.2118/207257-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Drilling and completion operations in depleted reservoirs, are challenging due to narrow margin between pore and fracture pressures. Therefore, Ultra-Low Density Reservoir Drilling Fluid (RDF) with optimum parameters is required to drill these wells safely. Design and effective field application of a sound engineered fluid solution to fulfill these operational demands are described.\\n Ultra-Low Density RDF NAF with minimal fluid invasion characteristics was developed after extensive lab testing, to cover the fluid density from 7.2 – 8.0 ppg. The fluid properties were optimized based on reservoir requirements and challenging bottom-hole conditions. The design criteria benchmarks and field application details are presented. Fluids were stress tested for drill solids, reservoir water and density increase contamination. Multi-segment collaboration and teamwork were key during job planning and on-site job execution, to achieve operational success.\\n For the first time in UAE, a major Offshore Operator successfully applied an Ultra-Low Density RDF-NAF, which provided remarkable stability and performance. The fluid was tested in the lab with polymeric viscosifier alone and in combination with organophilic clay. In order to gain rheology during the initial mixing, about 3.0 ppb of organophilic clay were introduced to system along with the polymeric viscosifier. Later, all the new fluid batches were built with polymeric additives alone to achieve target properties. A total of 10,250 ft of 8 ½\\\" horizontal section was drilled to section TD with record ROP compared to previous wells in the same field, with no fluids related complications. With limited support from the solid control equipment, the team managed to keep the density ranging from 7.5 ppg to 7.8 ppg at surface condition, using premixed dilution.\\n Bridging was monitored through actual testing on location and successfully maintained the target PSD values throughout the section by splitting the flow on three shaker screen size combination. Due to non-operation related issues, hole was kept static for 20 days. After such long static time, 8 ½\\\" drilling BHA was run to bottom smoothly precautionary breaking circulation every 5 stands. Finally, after successful logging operation, 6 5/8\\\" LEL liner was set to TD and the well completed as planned.\\n Success of this field application indicates that an Ultra-Low density fluid can be designed, run successfully and deliver exemplary performance. Lessons learned are compared with conceptual design for future optimization. Laboratory test results are presented, which formed the basis of a seamless planned field application.\",\"PeriodicalId\":10959,\"journal\":{\"name\":\"Day 3 Wed, November 17, 2021\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, November 17, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/207257-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, November 17, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/207257-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and First Application of an Ultra-Low Density Non-Aqueous Reservoir Drilling Fluid in the United Arab Emirates: A Viable Technical Solution to Drill Maximum Reservoir Contact Wells Across Depleted Reservoirs
Drilling and completion operations in depleted reservoirs, are challenging due to narrow margin between pore and fracture pressures. Therefore, Ultra-Low Density Reservoir Drilling Fluid (RDF) with optimum parameters is required to drill these wells safely. Design and effective field application of a sound engineered fluid solution to fulfill these operational demands are described.
Ultra-Low Density RDF NAF with minimal fluid invasion characteristics was developed after extensive lab testing, to cover the fluid density from 7.2 – 8.0 ppg. The fluid properties were optimized based on reservoir requirements and challenging bottom-hole conditions. The design criteria benchmarks and field application details are presented. Fluids were stress tested for drill solids, reservoir water and density increase contamination. Multi-segment collaboration and teamwork were key during job planning and on-site job execution, to achieve operational success.
For the first time in UAE, a major Offshore Operator successfully applied an Ultra-Low Density RDF-NAF, which provided remarkable stability and performance. The fluid was tested in the lab with polymeric viscosifier alone and in combination with organophilic clay. In order to gain rheology during the initial mixing, about 3.0 ppb of organophilic clay were introduced to system along with the polymeric viscosifier. Later, all the new fluid batches were built with polymeric additives alone to achieve target properties. A total of 10,250 ft of 8 ½" horizontal section was drilled to section TD with record ROP compared to previous wells in the same field, with no fluids related complications. With limited support from the solid control equipment, the team managed to keep the density ranging from 7.5 ppg to 7.8 ppg at surface condition, using premixed dilution.
Bridging was monitored through actual testing on location and successfully maintained the target PSD values throughout the section by splitting the flow on three shaker screen size combination. Due to non-operation related issues, hole was kept static for 20 days. After such long static time, 8 ½" drilling BHA was run to bottom smoothly precautionary breaking circulation every 5 stands. Finally, after successful logging operation, 6 5/8" LEL liner was set to TD and the well completed as planned.
Success of this field application indicates that an Ultra-Low density fluid can be designed, run successfully and deliver exemplary performance. Lessons learned are compared with conceptual design for future optimization. Laboratory test results are presented, which formed the basis of a seamless planned field application.