{"title":"重新配置并行状态机复制","authors":"E. Alchieri, F. Dotti, O. Mendizabal, F. Pedone","doi":"10.1109/SRDS.2017.23","DOIUrl":null,"url":null,"abstract":"State Machine Replication (SMR) is a well-known technique to implement fault-tolerant systems. In SMR, servers are replicated and client requests are deterministically executed in the same order by all replicas. To improve performance in multi-processor systems, some approaches have proposed to parallelize the execution of non-conflicting requests. Such approaches perform remarkably well in workloads dominated by non-conflicting requests. Conflicting requests introduce expensive synchronization and result in considerable performance loss. Current approaches to parallel SMR define the degree of parallelism statically. However, it is often difficult to predict the best degree of parallelism for a workload and workloads experience variations that change their best degree of parallelism. This paper proposes a protocol to reconfigure the degree of parallelism in parallel SMR on-the-fly. Experiments show the gains due to reconfiguration and shed some light on the behavior of parallel and reconfigurable SMR.","PeriodicalId":6475,"journal":{"name":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","volume":"11 1","pages":"104-113"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Reconfiguring Parallel State Machine Replication\",\"authors\":\"E. Alchieri, F. Dotti, O. Mendizabal, F. Pedone\",\"doi\":\"10.1109/SRDS.2017.23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"State Machine Replication (SMR) is a well-known technique to implement fault-tolerant systems. In SMR, servers are replicated and client requests are deterministically executed in the same order by all replicas. To improve performance in multi-processor systems, some approaches have proposed to parallelize the execution of non-conflicting requests. Such approaches perform remarkably well in workloads dominated by non-conflicting requests. Conflicting requests introduce expensive synchronization and result in considerable performance loss. Current approaches to parallel SMR define the degree of parallelism statically. However, it is often difficult to predict the best degree of parallelism for a workload and workloads experience variations that change their best degree of parallelism. This paper proposes a protocol to reconfigure the degree of parallelism in parallel SMR on-the-fly. Experiments show the gains due to reconfiguration and shed some light on the behavior of parallel and reconfigurable SMR.\",\"PeriodicalId\":6475,\"journal\":{\"name\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"volume\":\"11 1\",\"pages\":\"104-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SRDS.2017.23\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SRDS.2017.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
State Machine Replication (SMR) is a well-known technique to implement fault-tolerant systems. In SMR, servers are replicated and client requests are deterministically executed in the same order by all replicas. To improve performance in multi-processor systems, some approaches have proposed to parallelize the execution of non-conflicting requests. Such approaches perform remarkably well in workloads dominated by non-conflicting requests. Conflicting requests introduce expensive synchronization and result in considerable performance loss. Current approaches to parallel SMR define the degree of parallelism statically. However, it is often difficult to predict the best degree of parallelism for a workload and workloads experience variations that change their best degree of parallelism. This paper proposes a protocol to reconfigure the degree of parallelism in parallel SMR on-the-fly. Experiments show the gains due to reconfiguration and shed some light on the behavior of parallel and reconfigurable SMR.