{"title":"细胞外囊泡促进肺损伤发病机制中的细胞间通讯。","authors":"Heedoo Lee, Duo Zhang, J. Minhas, Yang Jin","doi":"10.4172/2168-9296.1000175","DOIUrl":null,"url":null,"abstract":"Extracellular vesicles (EVs) are a group of heterogeneous, nano-sized structures surrounded by lipid bilayer membranes that are released by cells. Depending on their size and mechanisms of formation, EVs are often referred to as exosomes, microvesicles (MVs) and apoptotic bodies (AB). EVs are evolutionally conserved vesicles that mediate intercellular communications and cross-talk, via transferring proteins, lipids and nucleic acids. Accumulating evidence suggests that EVs exert essential physiological and pathological functions on both their mother and recipient cells. Therefore, growing interests focus on the potentials of EVs to serve as novel targets for the development of therapeutic and diagnostic strategies. Currently, extensive reports are yielded from cancer research. However, besides malignancy, EVs may also serve as crucial regulators in other devastating conditions, such as the acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). The generation, regulation and function of EVs in ARDS/ALI are largely unexplored. In this mini review, we will briefly review the current understanding of EVs and their known physiological/pathological functions in the pathogenesis of ARDS/ALI. Previously, only scattered reports have been published in this field. We believe that further investigations focusing on EVs and their compositions will shed light on novel insights in the research of ARDS/ALI.","PeriodicalId":9775,"journal":{"name":"Cell & developmental biology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Extracellular Vesicles Facilitate the Intercellular Communications in the Pathogenesis of Lung Injury.\",\"authors\":\"Heedoo Lee, Duo Zhang, J. Minhas, Yang Jin\",\"doi\":\"10.4172/2168-9296.1000175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracellular vesicles (EVs) are a group of heterogeneous, nano-sized structures surrounded by lipid bilayer membranes that are released by cells. Depending on their size and mechanisms of formation, EVs are often referred to as exosomes, microvesicles (MVs) and apoptotic bodies (AB). EVs are evolutionally conserved vesicles that mediate intercellular communications and cross-talk, via transferring proteins, lipids and nucleic acids. Accumulating evidence suggests that EVs exert essential physiological and pathological functions on both their mother and recipient cells. Therefore, growing interests focus on the potentials of EVs to serve as novel targets for the development of therapeutic and diagnostic strategies. Currently, extensive reports are yielded from cancer research. However, besides malignancy, EVs may also serve as crucial regulators in other devastating conditions, such as the acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). The generation, regulation and function of EVs in ARDS/ALI are largely unexplored. In this mini review, we will briefly review the current understanding of EVs and their known physiological/pathological functions in the pathogenesis of ARDS/ALI. Previously, only scattered reports have been published in this field. We believe that further investigations focusing on EVs and their compositions will shed light on novel insights in the research of ARDS/ALI.\",\"PeriodicalId\":9775,\"journal\":{\"name\":\"Cell & developmental biology\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell & developmental biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2168-9296.1000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell & developmental biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2168-9296.1000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracellular Vesicles Facilitate the Intercellular Communications in the Pathogenesis of Lung Injury.
Extracellular vesicles (EVs) are a group of heterogeneous, nano-sized structures surrounded by lipid bilayer membranes that are released by cells. Depending on their size and mechanisms of formation, EVs are often referred to as exosomes, microvesicles (MVs) and apoptotic bodies (AB). EVs are evolutionally conserved vesicles that mediate intercellular communications and cross-talk, via transferring proteins, lipids and nucleic acids. Accumulating evidence suggests that EVs exert essential physiological and pathological functions on both their mother and recipient cells. Therefore, growing interests focus on the potentials of EVs to serve as novel targets for the development of therapeutic and diagnostic strategies. Currently, extensive reports are yielded from cancer research. However, besides malignancy, EVs may also serve as crucial regulators in other devastating conditions, such as the acute respiratory distress syndrome (ARDS) and acute lung injury (ALI). The generation, regulation and function of EVs in ARDS/ALI are largely unexplored. In this mini review, we will briefly review the current understanding of EVs and their known physiological/pathological functions in the pathogenesis of ARDS/ALI. Previously, only scattered reports have been published in this field. We believe that further investigations focusing on EVs and their compositions will shed light on novel insights in the research of ARDS/ALI.