{"title":"长期施肥对沙质土壤吸附能力的影响","authors":"V. Šimanský, J. Jonczak","doi":"10.2478/agri-2019-0017","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the results of an investigation of the effects of particle-size distribution, soil organic matter content and its parameters on soil sorption capacity are presented and their mutual relationships in sandy soils under long-term fertilisation experiments are determined. Soil samples were taken at the experimental station of Warsaw University of Life Sciences located in Skierniewice, (Poland) in spring 2017. The study included 94- and 41-year-old experiments with mineral fertilisation (no fertilisation, NPK, CaNPK) and 25-year-old experiment with mineral fertilisation + farmyard manure (FYM) in 4-year cycle: FYM, FYM+NPK and FYM+CaNPK. The results show that in the 94-year-old experiment in NPK and CaNPK treatments, hydrolytic acidity (Ha) decreased in comparison with the control by 30% and 88%, respectively, while in 25- and 41-year-old experiments only the application of NPK significantly increased Ha values. The sum of basic cations increased by a factor of 10 at the most in the CaNPK treatment in the 94-year-old experiment. The same effect was also observed in the 25-year-old experiment. On the one hand, the sorption complex gradually became fully saturated as a result of fertilisation in the 94-year-old experiment. On the other hand, in the 25- and 41-year-old experiments, base saturation was substantially reduced. A higher humus stability was an important agent for improving soil sorption capacity in 41- and 94-year old experiments.","PeriodicalId":7527,"journal":{"name":"Agriculture (Pol'nohospodárstvo)","volume":"15 1","pages":"164 - 171"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sorption Capacity of Sandy Soil Under Long-Term Fertilisation\",\"authors\":\"V. Šimanský, J. Jonczak\",\"doi\":\"10.2478/agri-2019-0017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, the results of an investigation of the effects of particle-size distribution, soil organic matter content and its parameters on soil sorption capacity are presented and their mutual relationships in sandy soils under long-term fertilisation experiments are determined. Soil samples were taken at the experimental station of Warsaw University of Life Sciences located in Skierniewice, (Poland) in spring 2017. The study included 94- and 41-year-old experiments with mineral fertilisation (no fertilisation, NPK, CaNPK) and 25-year-old experiment with mineral fertilisation + farmyard manure (FYM) in 4-year cycle: FYM, FYM+NPK and FYM+CaNPK. The results show that in the 94-year-old experiment in NPK and CaNPK treatments, hydrolytic acidity (Ha) decreased in comparison with the control by 30% and 88%, respectively, while in 25- and 41-year-old experiments only the application of NPK significantly increased Ha values. The sum of basic cations increased by a factor of 10 at the most in the CaNPK treatment in the 94-year-old experiment. The same effect was also observed in the 25-year-old experiment. On the one hand, the sorption complex gradually became fully saturated as a result of fertilisation in the 94-year-old experiment. On the other hand, in the 25- and 41-year-old experiments, base saturation was substantially reduced. A higher humus stability was an important agent for improving soil sorption capacity in 41- and 94-year old experiments.\",\"PeriodicalId\":7527,\"journal\":{\"name\":\"Agriculture (Pol'nohospodárstvo)\",\"volume\":\"15 1\",\"pages\":\"164 - 171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agriculture (Pol'nohospodárstvo)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/agri-2019-0017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agriculture (Pol'nohospodárstvo)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/agri-2019-0017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sorption Capacity of Sandy Soil Under Long-Term Fertilisation
Abstract In this paper, the results of an investigation of the effects of particle-size distribution, soil organic matter content and its parameters on soil sorption capacity are presented and their mutual relationships in sandy soils under long-term fertilisation experiments are determined. Soil samples were taken at the experimental station of Warsaw University of Life Sciences located in Skierniewice, (Poland) in spring 2017. The study included 94- and 41-year-old experiments with mineral fertilisation (no fertilisation, NPK, CaNPK) and 25-year-old experiment with mineral fertilisation + farmyard manure (FYM) in 4-year cycle: FYM, FYM+NPK and FYM+CaNPK. The results show that in the 94-year-old experiment in NPK and CaNPK treatments, hydrolytic acidity (Ha) decreased in comparison with the control by 30% and 88%, respectively, while in 25- and 41-year-old experiments only the application of NPK significantly increased Ha values. The sum of basic cations increased by a factor of 10 at the most in the CaNPK treatment in the 94-year-old experiment. The same effect was also observed in the 25-year-old experiment. On the one hand, the sorption complex gradually became fully saturated as a result of fertilisation in the 94-year-old experiment. On the other hand, in the 25- and 41-year-old experiments, base saturation was substantially reduced. A higher humus stability was an important agent for improving soil sorption capacity in 41- and 94-year old experiments.