使用级联RLS-LMS预测的数字音频无损压缩

R. Yu, C. Ko
{"title":"使用级联RLS-LMS预测的数字音频无损压缩","authors":"R. Yu, C. Ko","doi":"10.1109/TSA.2003.818111","DOIUrl":null,"url":null,"abstract":"This paper proposes a cascaded RLS-LMS predictor for lossless audio coding. In this proposed predictor, a high-order LMS predictor is employed to model the ample tonal and harmonic components of the audio signal for optimal prediction gain performance. To solve the slow convergence problem of the LMS algorithm with colored inputs, a low-order RLS predictor is cascaded prior to the LMS predictor to remove the spectral tilt of the audio signal. This cascaded RLS-LMS structure effectively mitigates the slow convergence problem of the LMS algorithm and provides superior prediction gain performance compared with the conventional LMS predictor, resulting in a better overall compression performance.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"31 1","pages":"532-537"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Lossless compression of digital audio using cascaded RLS-LMS prediction\",\"authors\":\"R. Yu, C. Ko\",\"doi\":\"10.1109/TSA.2003.818111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a cascaded RLS-LMS predictor for lossless audio coding. In this proposed predictor, a high-order LMS predictor is employed to model the ample tonal and harmonic components of the audio signal for optimal prediction gain performance. To solve the slow convergence problem of the LMS algorithm with colored inputs, a low-order RLS predictor is cascaded prior to the LMS predictor to remove the spectral tilt of the audio signal. This cascaded RLS-LMS structure effectively mitigates the slow convergence problem of the LMS algorithm and provides superior prediction gain performance compared with the conventional LMS predictor, resulting in a better overall compression performance.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"31 1\",\"pages\":\"532-537\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.818111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.818111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

提出了一种用于无损音频编码的级联RLS-LMS预测器。在该预测器中,采用高阶LMS预测器对音频信号的大量音调和谐波成分进行建模,以获得最佳的预测增益性能。为了解决彩色输入时LMS算法收敛缓慢的问题,在LMS预测器之前级联了一个低阶RLS预测器,以消除音频信号的频谱倾斜。这种级联的RLS-LMS结构有效地缓解了LMS算法收敛缓慢的问题,与传统的LMS预测器相比,提供了更好的预测增益性能,从而获得了更好的整体压缩性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lossless compression of digital audio using cascaded RLS-LMS prediction
This paper proposes a cascaded RLS-LMS predictor for lossless audio coding. In this proposed predictor, a high-order LMS predictor is employed to model the ample tonal and harmonic components of the audio signal for optimal prediction gain performance. To solve the slow convergence problem of the LMS algorithm with colored inputs, a low-order RLS predictor is cascaded prior to the LMS predictor to remove the spectral tilt of the audio signal. This cascaded RLS-LMS structure effectively mitigates the slow convergence problem of the LMS algorithm and provides superior prediction gain performance compared with the conventional LMS predictor, resulting in a better overall compression performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Errata to "Using Steady-State Suppression to Improve Speech Intelligibility in Reverberant Environments for Elderly Listeners" Farewell Editorial Inaugural Editorial: Riding the Tidal Wave of Human-Centric Information Processing - Innovate, Outreach, Collaborate, Connect, Expand, and Win Three-Dimensional Sound Field Reproduction Using Multiple Circular Loudspeaker Arrays Introduction to the Special Issue on Processing Reverberant Speech: Methodologies and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1