F. Khodadadeh, P. A. Azar, Mohamad Saber Tehrani, N. Assi
{"title":"微波辅助溶胶-凝胶法制备CdS纳米颗粒光催化降解2,4,6 -三氯苯酚","authors":"F. Khodadadeh, P. A. Azar, Mohamad Saber Tehrani, N. Assi","doi":"10.7508/IJND.2016.03.010","DOIUrl":null,"url":null,"abstract":"This paper reports the synthesis and characterization of photocatalyst CdS nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. CdS nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as X-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy and UV-visible spectrophotometer. The average crystallite size was found to be 46 nm. The influences of catalyst amount, contaminant concentration, and pH of the reaction solution were evaluated and optimized. Highest degradation was obtained after 3hours UV-C light irradiation. The kinetic was evaluated in different contaminant concentrations under optimized conditions. It showed that the 2,4,6-trichlorophenol degradation reactions follow pseudo first order kinetic.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Photocatalytic degradation of 2, 4, 6-Ttrichlorophenol with CdS nanoparticles synthesis by microwave-assisted sol-gel method\",\"authors\":\"F. Khodadadeh, P. A. Azar, Mohamad Saber Tehrani, N. Assi\",\"doi\":\"10.7508/IJND.2016.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the synthesis and characterization of photocatalyst CdS nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. CdS nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as X-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy and UV-visible spectrophotometer. The average crystallite size was found to be 46 nm. The influences of catalyst amount, contaminant concentration, and pH of the reaction solution were evaluated and optimized. Highest degradation was obtained after 3hours UV-C light irradiation. The kinetic was evaluated in different contaminant concentrations under optimized conditions. It showed that the 2,4,6-trichlorophenol degradation reactions follow pseudo first order kinetic.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2016.03.010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2016.03.010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Photocatalytic degradation of 2, 4, 6-Ttrichlorophenol with CdS nanoparticles synthesis by microwave-assisted sol-gel method
This paper reports the synthesis and characterization of photocatalyst CdS nanoparticles for investigation of photocatalytic degradation of 2,4,6-trichlorophenol. CdS nanoparticles were synthesized by the microwave-assisted sol-gel method and characterized by various techniques such as X-ray diffraction, filed emission scanning electron microscopy, energy dispersive spectroscopy, Fourier transform infrared spectroscopy and UV-visible spectrophotometer. The average crystallite size was found to be 46 nm. The influences of catalyst amount, contaminant concentration, and pH of the reaction solution were evaluated and optimized. Highest degradation was obtained after 3hours UV-C light irradiation. The kinetic was evaluated in different contaminant concentrations under optimized conditions. It showed that the 2,4,6-trichlorophenol degradation reactions follow pseudo first order kinetic.