混合纳米生物复合材料骨重建的ANSYS建模

J. S. Kashan, S. Ali
{"title":"混合纳米生物复合材料骨重建的ANSYS建模","authors":"J. S. Kashan, S. Ali","doi":"10.22034/JSM.2020.1864464.1411","DOIUrl":null,"url":null,"abstract":"In the present work, an attempt has been made to study and improve the physical and biomechanical properties of adding Titanium dioxide (TiO2) and yttria stabilized zirconia (Y-PSZ) Nano fillers ceramic particles for reinforced the high density polyethylene (HDPE) matrix Nanocomposites for fabricated six bio nanocomposites hybrid by using hot pressing technique at different compounding temperature of (180,190, and 200 °C) and compression pressures of (30, 60, and 90 MPa). The fabricated Nano systems were designed, produced and investigated for use in repairs and grafting of the human bones, which are exposed to accidents or life-threatening diseases. The main current research results show that with the increase of the TiO2 filler contain from 0 to 10 %, the value bulk densities increase by 30.24 % and when adding 2% partial stabilized zirconia (Y-PSZ), this value was further increased by 13.91%. For the same conditions the value percentages true porosity decrease by 48.68 % and further by 84.85 %, respectively. For the same previous parametric values, it has also been accessed that the maximum compression strength for this study was increased by 33.34 % and then further by 22 %, where these values higher by 90.11% than the previous mentioned studies. The micro-Vickers Hardness increased by 30.11 % for the second manufacturing system comparing with the first one, while the maximum equivalent von–Misses Stresses obtained from the current work withstand higher stresses than the natural bone by 52.65 higher than the previous studies. The stress safety factors increase by 58.38 % and by 21.42 % for the first and second systems, respectively. The achieved results values for the modeled femur bone is equivalent to actual service of the activity during normal movement of the patient. These results give great the designers choices to use successful bio composites for in vivo tests according to the clinical situation, age and the static and dynamic loads when designing a material to repair the fractured bones due to different types of accidents.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"12 1","pages":"774-790"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ANSYS Modeling for Bone Reconstruction by Using Hybrid Nano Bio Composite\",\"authors\":\"J. S. Kashan, S. Ali\",\"doi\":\"10.22034/JSM.2020.1864464.1411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, an attempt has been made to study and improve the physical and biomechanical properties of adding Titanium dioxide (TiO2) and yttria stabilized zirconia (Y-PSZ) Nano fillers ceramic particles for reinforced the high density polyethylene (HDPE) matrix Nanocomposites for fabricated six bio nanocomposites hybrid by using hot pressing technique at different compounding temperature of (180,190, and 200 °C) and compression pressures of (30, 60, and 90 MPa). The fabricated Nano systems were designed, produced and investigated for use in repairs and grafting of the human bones, which are exposed to accidents or life-threatening diseases. The main current research results show that with the increase of the TiO2 filler contain from 0 to 10 %, the value bulk densities increase by 30.24 % and when adding 2% partial stabilized zirconia (Y-PSZ), this value was further increased by 13.91%. For the same conditions the value percentages true porosity decrease by 48.68 % and further by 84.85 %, respectively. For the same previous parametric values, it has also been accessed that the maximum compression strength for this study was increased by 33.34 % and then further by 22 %, where these values higher by 90.11% than the previous mentioned studies. The micro-Vickers Hardness increased by 30.11 % for the second manufacturing system comparing with the first one, while the maximum equivalent von–Misses Stresses obtained from the current work withstand higher stresses than the natural bone by 52.65 higher than the previous studies. The stress safety factors increase by 58.38 % and by 21.42 % for the first and second systems, respectively. The achieved results values for the modeled femur bone is equivalent to actual service of the activity during normal movement of the patient. These results give great the designers choices to use successful bio composites for in vivo tests according to the clinical situation, age and the static and dynamic loads when designing a material to repair the fractured bones due to different types of accidents.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"12 1\",\"pages\":\"774-790\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2020.1864464.1411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2020.1864464.1411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在不同的复合温度(180、190、200℃)和压力(30、60、90 MPa)下,采用热压技术,研究了二氧化钛(TiO2)和钇稳定氧化锆(Y-PSZ)纳米填充陶瓷颗粒增强高密度聚乙烯(HDPE)基纳米复合材料的物理力学性能,并对其进行了改进。制造的纳米系统被设计、生产和研究用于修复和移植人类骨骼,这些骨骼暴露在事故或危及生命的疾病中。目前的主要研究结果表明,当TiO2填料含量从0增加到10%时,堆积密度值提高了30.24%,当添加2%的部分稳定氧化锆(Y-PSZ)时,堆积密度值进一步提高了13.91%。在相同条件下,真实孔隙度值百分比分别降低48.68%和84.85%。在相同的参数值下,本研究的最大抗压强度分别提高了33.34%和22%,比之前的研究提高了90.11%。与第一种制造系统相比,第二种制造系统的显微维氏硬度提高了30.11%,而目前工作获得的最大等效von - miss应力比天然骨承受的应力高52.65。第一、二套系统的应力安全系数分别提高了58.38%和21.42%。模拟股骨所获得的结果值相当于患者正常活动期间的实际服务。这些结果给设计者在设计修复不同类型事故导致的骨折的材料时,根据临床情况、年龄和静、动载荷,选用成功的生物复合材料进行体内试验提供了很大的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANSYS Modeling for Bone Reconstruction by Using Hybrid Nano Bio Composite
In the present work, an attempt has been made to study and improve the physical and biomechanical properties of adding Titanium dioxide (TiO2) and yttria stabilized zirconia (Y-PSZ) Nano fillers ceramic particles for reinforced the high density polyethylene (HDPE) matrix Nanocomposites for fabricated six bio nanocomposites hybrid by using hot pressing technique at different compounding temperature of (180,190, and 200 °C) and compression pressures of (30, 60, and 90 MPa). The fabricated Nano systems were designed, produced and investigated for use in repairs and grafting of the human bones, which are exposed to accidents or life-threatening diseases. The main current research results show that with the increase of the TiO2 filler contain from 0 to 10 %, the value bulk densities increase by 30.24 % and when adding 2% partial stabilized zirconia (Y-PSZ), this value was further increased by 13.91%. For the same conditions the value percentages true porosity decrease by 48.68 % and further by 84.85 %, respectively. For the same previous parametric values, it has also been accessed that the maximum compression strength for this study was increased by 33.34 % and then further by 22 %, where these values higher by 90.11% than the previous mentioned studies. The micro-Vickers Hardness increased by 30.11 % for the second manufacturing system comparing with the first one, while the maximum equivalent von–Misses Stresses obtained from the current work withstand higher stresses than the natural bone by 52.65 higher than the previous studies. The stress safety factors increase by 58.38 % and by 21.42 % for the first and second systems, respectively. The achieved results values for the modeled femur bone is equivalent to actual service of the activity during normal movement of the patient. These results give great the designers choices to use successful bio composites for in vivo tests according to the clinical situation, age and the static and dynamic loads when designing a material to repair the fractured bones due to different types of accidents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dispersion of SH-Wave in a Heterogeneous Orthotropic Layer Sandwiched Between an Inhomogeneous Semi-Infinite Medium and a Heterogeneous Elastic Half-Space Large Deformation Hermitian Finite Element Coupled Thermoelasticity Analysis of Wave Propagation and Reflection in a Finite Domain Free Torsional Vibration Analysis of Hollow and Solid Non-Uniform Rotating Shafts Using Distributed and Lumped Modeling Technique Multi-Objective Optimization of Shot-Peening Parameters Using Modified Taguchi Technique Study on Vibration Band Gap Characteristics of a Branched Shape Periodic Structure Using the GDQR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1