大流图分区的资源效率

Víctor Medel Gracia, Unai Arronategui Arribalzaga
{"title":"大流图分区的资源效率","authors":"Víctor Medel Gracia, Unai Arronategui Arribalzaga","doi":"10.1109/ISPDC.2015.21","DOIUrl":null,"url":null,"abstract":"Real time streaming and processing of big graphs is a relevant and challenging application to be executed in a Cloud infrastructure. We have analysed the amount of resources needed to partition large streamed graphs with different distributed architectures. We have improved state of the art limitations proposing a decentralised and scalable model which is more efficient in memory usage, network traffic and number of processing machines. The improvement has been achieved summarising incoming vertices of the graph and accessing to local information of the already partitioned graph. Classical approaches need all information about the previous vertices. In our system, local information is updated in a feedback scheme periodically. Our experimental results show that current architectures cannot process large scale streamed graphs due to memory limitations. We have proved that our architecture reduces the number of needed machines by seven because it accesses to local memory instead of a distributed one. The total memory size has been also reduced. Finally, our model allows to adjust the quality of the partition solution to the desired amount of memory and network traffic.","PeriodicalId":20515,"journal":{"name":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","volume":"38 1","pages":"120-129"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Resource Efficiency to Partition Big Streamed Graphs\",\"authors\":\"Víctor Medel Gracia, Unai Arronategui Arribalzaga\",\"doi\":\"10.1109/ISPDC.2015.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real time streaming and processing of big graphs is a relevant and challenging application to be executed in a Cloud infrastructure. We have analysed the amount of resources needed to partition large streamed graphs with different distributed architectures. We have improved state of the art limitations proposing a decentralised and scalable model which is more efficient in memory usage, network traffic and number of processing machines. The improvement has been achieved summarising incoming vertices of the graph and accessing to local information of the already partitioned graph. Classical approaches need all information about the previous vertices. In our system, local information is updated in a feedback scheme periodically. Our experimental results show that current architectures cannot process large scale streamed graphs due to memory limitations. We have proved that our architecture reduces the number of needed machines by seven because it accesses to local memory instead of a distributed one. The total memory size has been also reduced. Finally, our model allows to adjust the quality of the partition solution to the desired amount of memory and network traffic.\",\"PeriodicalId\":20515,\"journal\":{\"name\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"volume\":\"38 1\",\"pages\":\"120-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2015.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2015.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

大图形的实时流和处理是在云基础设施中执行的一个相关且具有挑战性的应用程序。我们分析了用不同的分布式架构划分大型流图所需的资源量。我们改进了最先进的限制,提出了一个分散和可扩展的模型,在内存使用、网络流量和处理机器数量方面更有效。改进实现了对图的传入顶点的汇总和对已划分图的局部信息的访问。经典方法需要关于前面顶点的所有信息。在我们的系统中,局部信息以反馈方式定期更新。我们的实验结果表明,由于内存限制,当前架构无法处理大规模流图。我们已经证明,我们的架构将所需的机器数量减少了7台,因为它访问的是本地内存,而不是分布式内存。总的内存大小也减少了。最后,我们的模型允许调整分区解决方案的质量以适应所需的内存和网络流量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resource Efficiency to Partition Big Streamed Graphs
Real time streaming and processing of big graphs is a relevant and challenging application to be executed in a Cloud infrastructure. We have analysed the amount of resources needed to partition large streamed graphs with different distributed architectures. We have improved state of the art limitations proposing a decentralised and scalable model which is more efficient in memory usage, network traffic and number of processing machines. The improvement has been achieved summarising incoming vertices of the graph and accessing to local information of the already partitioned graph. Classical approaches need all information about the previous vertices. In our system, local information is updated in a feedback scheme periodically. Our experimental results show that current architectures cannot process large scale streamed graphs due to memory limitations. We have proved that our architecture reduces the number of needed machines by seven because it accesses to local memory instead of a distributed one. The total memory size has been also reduced. Finally, our model allows to adjust the quality of the partition solution to the desired amount of memory and network traffic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Keynote Lecture : Learning Representations: Opportunities for Parallel and Distributed Computing Keynote Lecture : Gradient compression for efficient distributed deep learning Keynote Lecture : Neural circuit policies Keynote Lecture : Towards Robust, Large-scale Concurrent and Distributed Programming The Supercomputer "Fugaku" and Arm-SVE enabled A64FX processor for energy-efficiency and sustained application performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1