{"title":"基于面向对象技术的双偏振SAR图像分类","authors":"Xiuguo Liu, Yongsheng Li, Wei Gao, Lin Xiao","doi":"10.4236/jgis.2010.22017","DOIUrl":null,"url":null,"abstract":"This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.","PeriodicalId":93313,"journal":{"name":"Journal of geographic information system","volume":"71 1","pages":"113-119"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Double Polarization SAR Image Classification based on Object-Oriented Technology\",\"authors\":\"Xiuguo Liu, Yongsheng Li, Wei Gao, Lin Xiao\",\"doi\":\"10.4236/jgis.2010.22017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.\",\"PeriodicalId\":93313,\"journal\":{\"name\":\"Journal of geographic information system\",\"volume\":\"71 1\",\"pages\":\"113-119\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of geographic information system\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/jgis.2010.22017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geographic information system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jgis.2010.22017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
摘要
提出了基于DEM的双偏振合成孔径雷达(SAR)图像地物分类方法。它充分利用了极化信息和外部信息。本文利用江西省鄱阳湖地区ENVISAT ASAR APP双极化数据。与传统的基于像素的分类方法相比,本文充分利用了目标特征(颜色、形状、层次)和辅助的DEM信息。分类准确率由原来的73.7%提高到91.84%。结果表明,面向对象分类技术适用于双极化SAR的高精度分类。
Double Polarization SAR Image Classification based on Object-Oriented Technology
This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.