Tien-Dung Nguyen-Dinh, Nhu-Thuan Nguyen-Phuoc, Ngoc Thuy Trang Le, N. H. Nguyen, D. Nguyen
{"title":"一种基于氧化铁纳米颗粒的低水溶性药物双刺激反应递送系统","authors":"Tien-Dung Nguyen-Dinh, Nhu-Thuan Nguyen-Phuoc, Ngoc Thuy Trang Le, N. H. Nguyen, D. Nguyen","doi":"10.1557/s43578-023-01120-8","DOIUrl":null,"url":null,"abstract":"This study aimed to prepared a dual-stimuli-responsive delivery system based on iron oxide nanoparticles (IONPs) and Pluronic F127—Folic acid conjugation (F127-FA) for poorly water-soluble drugs. Oleic acid-coated IONPs were prepared and modified with F127-FA using ultrasonic treatment to form IONPs/F127-FA meanwhile Quercetin (QCT)—a poorly water-soluble drug was encapsulated into the nano-system. The results illustrated the successful preparation of IONPs/F127-FA and its saturation magnetization value was found to be 25.6 emu/g. Moreover, QCT was effectively entrapped into the synthesized IONPs/F127-FA and showed 23.45 ± 7.23% loading capacity and 89.87 ± 2.05% entrapment efficiency. Additionally, the MTT assay revealed that loaded QCT in IONPs/F127-FA showed high inhibition against the human breast cancer cells compared to the free one, which was attributed to the ability to bind to folate receptor α of IONPs/F127-FA. These results suggested that the IONPs/F127-FA system would be a promising dual-stimuli-responsive drug delivery system in cancer treatment.","PeriodicalId":14079,"journal":{"name":"International Journal of Materials Research","volume":"44 1","pages":"4057 - 4067"},"PeriodicalIF":0.7000,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A dual-stimuli-responsive delivery system for poorly water-soluble drug based on iron oxide nanoparticles\",\"authors\":\"Tien-Dung Nguyen-Dinh, Nhu-Thuan Nguyen-Phuoc, Ngoc Thuy Trang Le, N. H. Nguyen, D. Nguyen\",\"doi\":\"10.1557/s43578-023-01120-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to prepared a dual-stimuli-responsive delivery system based on iron oxide nanoparticles (IONPs) and Pluronic F127—Folic acid conjugation (F127-FA) for poorly water-soluble drugs. Oleic acid-coated IONPs were prepared and modified with F127-FA using ultrasonic treatment to form IONPs/F127-FA meanwhile Quercetin (QCT)—a poorly water-soluble drug was encapsulated into the nano-system. The results illustrated the successful preparation of IONPs/F127-FA and its saturation magnetization value was found to be 25.6 emu/g. Moreover, QCT was effectively entrapped into the synthesized IONPs/F127-FA and showed 23.45 ± 7.23% loading capacity and 89.87 ± 2.05% entrapment efficiency. Additionally, the MTT assay revealed that loaded QCT in IONPs/F127-FA showed high inhibition against the human breast cancer cells compared to the free one, which was attributed to the ability to bind to folate receptor α of IONPs/F127-FA. These results suggested that the IONPs/F127-FA system would be a promising dual-stimuli-responsive drug delivery system in cancer treatment.\",\"PeriodicalId\":14079,\"journal\":{\"name\":\"International Journal of Materials Research\",\"volume\":\"44 1\",\"pages\":\"4057 - 4067\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43578-023-01120-8\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43578-023-01120-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
A dual-stimuli-responsive delivery system for poorly water-soluble drug based on iron oxide nanoparticles
This study aimed to prepared a dual-stimuli-responsive delivery system based on iron oxide nanoparticles (IONPs) and Pluronic F127—Folic acid conjugation (F127-FA) for poorly water-soluble drugs. Oleic acid-coated IONPs were prepared and modified with F127-FA using ultrasonic treatment to form IONPs/F127-FA meanwhile Quercetin (QCT)—a poorly water-soluble drug was encapsulated into the nano-system. The results illustrated the successful preparation of IONPs/F127-FA and its saturation magnetization value was found to be 25.6 emu/g. Moreover, QCT was effectively entrapped into the synthesized IONPs/F127-FA and showed 23.45 ± 7.23% loading capacity and 89.87 ± 2.05% entrapment efficiency. Additionally, the MTT assay revealed that loaded QCT in IONPs/F127-FA showed high inhibition against the human breast cancer cells compared to the free one, which was attributed to the ability to bind to folate receptor α of IONPs/F127-FA. These results suggested that the IONPs/F127-FA system would be a promising dual-stimuli-responsive drug delivery system in cancer treatment.
期刊介绍:
The International Journal of Materials Research (IJMR) publishes original high quality experimental and theoretical papers and reviews on basic and applied research in the field of materials science and engineering, with focus on synthesis, processing, constitution, and properties of all classes of materials. Particular emphasis is placed on microstructural design, phase relations, computational thermodynamics, and kinetics at the nano to macro scale. Contributions may also focus on progress in advanced characterization techniques. All articles are subject to thorough, independent peer review.