基于对象的图像编码

Montse Pardàs
{"title":"基于对象的图像编码","authors":"Montse Pardàs","doi":"10.1016/S0083-6656(97)00051-2","DOIUrl":null,"url":null,"abstract":"<div><p>Object-based compression methods describe images in terms of a set of regions (a partition), and of some information for each region to be used by the receiver to reconstruct the image (its texture). Different techniques can be used to define the partition as well as for coding it and its texture. In this paper we propose a general multi-resolution segmentation algorithm which can deal with many different types of images selecting the appropriated criteria. We also review most outstanding techniques for coding in this context.</p></div>","PeriodicalId":101275,"journal":{"name":"Vistas in Astronomy","volume":"41 3","pages":"Pages 455-461"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00051-2","citationCount":"0","resultStr":"{\"title\":\"Object-based image coding\",\"authors\":\"Montse Pardàs\",\"doi\":\"10.1016/S0083-6656(97)00051-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Object-based compression methods describe images in terms of a set of regions (a partition), and of some information for each region to be used by the receiver to reconstruct the image (its texture). Different techniques can be used to define the partition as well as for coding it and its texture. In this paper we propose a general multi-resolution segmentation algorithm which can deal with many different types of images selecting the appropriated criteria. We also review most outstanding techniques for coding in this context.</p></div>\",\"PeriodicalId\":101275,\"journal\":{\"name\":\"Vistas in Astronomy\",\"volume\":\"41 3\",\"pages\":\"Pages 455-461\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0083-6656(97)00051-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vistas in Astronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0083665697000512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vistas in Astronomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0083665697000512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于对象的压缩方法根据一组区域(一个分区)和每个区域的一些信息来描述图像,接收器使用这些信息来重建图像(其纹理)。可以使用不同的技术来定义分区以及对分区及其纹理进行编码。本文提出了一种通用的多分辨率分割算法,该算法可以处理多种不同类型的图像,并选择合适的分割准则。我们还回顾了在这种情况下最杰出的编码技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object-based image coding

Object-based compression methods describe images in terms of a set of regions (a partition), and of some information for each region to be used by the receiver to reconstruct the image (its texture). Different techniques can be used to define the partition as well as for coding it and its texture. In this paper we propose a general multi-resolution segmentation algorithm which can deal with many different types of images selecting the appropriated criteria. We also review most outstanding techniques for coding in this context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Archaeomagnetism The calendar of the future. A world calendar with leap week Editorial Author index Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1