{"title":"中尺度湍流对地形封闭盆地风驱动环流的影响","authors":"L. Zavala Sansón","doi":"10.1080/03091929.2022.2065271","DOIUrl":null,"url":null,"abstract":"This paper studies the effects of time-dependent, mesoscale turbulence on the wind-driven ocean circulation in a closed basin with variable topography. Numerical simulations of a single-layer fluid with finite topography at the sloping boundaries are performed. The flow is forced by a suitable combination of a steady, basin-scale wind that generates the classical western-intensified anticyclonic gyre, plus a shorter, time-dependent forcing that injects energy at a narrow range of scales. Two contrasting situations are considered. First, in the absence of the large-scale forcing, the turbulence generates a cyclonic flow that follows the geostrophic contours around the basin. Second, the resulting mean circulation is studied when the large and small-scale forcing terms are considered together. In particular, it is discussed that the alteration of the anticyclonic gyre may be due to the turbulent-induced cyclonic circulation.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"191 1","pages":"159 - 184"},"PeriodicalIF":1.1000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of mesoscale turbulence on the wind-driven circulation in a closed basin with topography\",\"authors\":\"L. Zavala Sansón\",\"doi\":\"10.1080/03091929.2022.2065271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the effects of time-dependent, mesoscale turbulence on the wind-driven ocean circulation in a closed basin with variable topography. Numerical simulations of a single-layer fluid with finite topography at the sloping boundaries are performed. The flow is forced by a suitable combination of a steady, basin-scale wind that generates the classical western-intensified anticyclonic gyre, plus a shorter, time-dependent forcing that injects energy at a narrow range of scales. Two contrasting situations are considered. First, in the absence of the large-scale forcing, the turbulence generates a cyclonic flow that follows the geostrophic contours around the basin. Second, the resulting mean circulation is studied when the large and small-scale forcing terms are considered together. In particular, it is discussed that the alteration of the anticyclonic gyre may be due to the turbulent-induced cyclonic circulation.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"191 1\",\"pages\":\"159 - 184\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2022.2065271\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2022.2065271","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Effects of mesoscale turbulence on the wind-driven circulation in a closed basin with topography
This paper studies the effects of time-dependent, mesoscale turbulence on the wind-driven ocean circulation in a closed basin with variable topography. Numerical simulations of a single-layer fluid with finite topography at the sloping boundaries are performed. The flow is forced by a suitable combination of a steady, basin-scale wind that generates the classical western-intensified anticyclonic gyre, plus a shorter, time-dependent forcing that injects energy at a narrow range of scales. Two contrasting situations are considered. First, in the absence of the large-scale forcing, the turbulence generates a cyclonic flow that follows the geostrophic contours around the basin. Second, the resulting mean circulation is studied when the large and small-scale forcing terms are considered together. In particular, it is discussed that the alteration of the anticyclonic gyre may be due to the turbulent-induced cyclonic circulation.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.