E. Kusiak-Nejman, A. Wanag, Ł. Kowalczyk, J. Kapica-Kozar, A. Morawski
{"title":"蒽热分解石墨炭改性二氧化钛是制备可见活性光催化剂的一种很有前途的方法","authors":"E. Kusiak-Nejman, A. Wanag, Ł. Kowalczyk, J. Kapica-Kozar, A. Morawski","doi":"10.1515/jaots-2016-0206","DOIUrl":null,"url":null,"abstract":"Abstract This work investigated the photocatalytic performance of TiO2 photocatalysts modified with graphitic carbon under visible light with a very small component of UV. The graphitic carbon modification was conducted at 200-500 °C using thermal anthracene decomposition. The increase of calcination temperature leads to typical increase of crystallites size, decrease of the specific surface area and carbon content in modified samples. The characteristic peak for a skeletal in-plane vibrations of the anthracene ring located at 1522 cm-1 as well as the band at 1410 cm-1 assigned to C=C aromatic stretching vibrations mode were possible to observe. The analysis of the morphology using SEM confirmed the presence on new multi-layer carbonaceous flakes decorated with TiO2 nanoparticles. TEM analysis and Raman studies proved the presence of graphitic structures covering the surface of the prepared TiO2/C photocatalysts. The highest photocatalytic activity, calculated on the basis of phenol photodegradation under visible light, was found for the photocatalyst modified with graphitic carbon at 400 °C (TiO2/C-400).","PeriodicalId":14870,"journal":{"name":"Journal of Advanced Oxidation Technologies","volume":"1 1","pages":"227 - 235"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modification of Titanium Dioxide with Graphitic Carbon from Anthracene Thermal Decomposition as a Promising Method for Visible- Active Photocatalysts Preparation\",\"authors\":\"E. Kusiak-Nejman, A. Wanag, Ł. Kowalczyk, J. Kapica-Kozar, A. Morawski\",\"doi\":\"10.1515/jaots-2016-0206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work investigated the photocatalytic performance of TiO2 photocatalysts modified with graphitic carbon under visible light with a very small component of UV. The graphitic carbon modification was conducted at 200-500 °C using thermal anthracene decomposition. The increase of calcination temperature leads to typical increase of crystallites size, decrease of the specific surface area and carbon content in modified samples. The characteristic peak for a skeletal in-plane vibrations of the anthracene ring located at 1522 cm-1 as well as the band at 1410 cm-1 assigned to C=C aromatic stretching vibrations mode were possible to observe. The analysis of the morphology using SEM confirmed the presence on new multi-layer carbonaceous flakes decorated with TiO2 nanoparticles. TEM analysis and Raman studies proved the presence of graphitic structures covering the surface of the prepared TiO2/C photocatalysts. The highest photocatalytic activity, calculated on the basis of phenol photodegradation under visible light, was found for the photocatalyst modified with graphitic carbon at 400 °C (TiO2/C-400).\",\"PeriodicalId\":14870,\"journal\":{\"name\":\"Journal of Advanced Oxidation Technologies\",\"volume\":\"1 1\",\"pages\":\"227 - 235\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Oxidation Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jaots-2016-0206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Chemistry\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Oxidation Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jaots-2016-0206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Chemistry","Score":null,"Total":0}
Modification of Titanium Dioxide with Graphitic Carbon from Anthracene Thermal Decomposition as a Promising Method for Visible- Active Photocatalysts Preparation
Abstract This work investigated the photocatalytic performance of TiO2 photocatalysts modified with graphitic carbon under visible light with a very small component of UV. The graphitic carbon modification was conducted at 200-500 °C using thermal anthracene decomposition. The increase of calcination temperature leads to typical increase of crystallites size, decrease of the specific surface area and carbon content in modified samples. The characteristic peak for a skeletal in-plane vibrations of the anthracene ring located at 1522 cm-1 as well as the band at 1410 cm-1 assigned to C=C aromatic stretching vibrations mode were possible to observe. The analysis of the morphology using SEM confirmed the presence on new multi-layer carbonaceous flakes decorated with TiO2 nanoparticles. TEM analysis and Raman studies proved the presence of graphitic structures covering the surface of the prepared TiO2/C photocatalysts. The highest photocatalytic activity, calculated on the basis of phenol photodegradation under visible light, was found for the photocatalyst modified with graphitic carbon at 400 °C (TiO2/C-400).
期刊介绍:
The Journal of advanced oxidation technologies (AOTs) has been providing an international forum that accepts papers describing basic research and practical applications of these technologies. The Journal has been publishing articles in the form of critical reviews and research papers focused on the science and engineering of AOTs for water, air and soil treatment. Due to the enormous progress in the applications of various chemical and bio-oxidation and reduction processes, the scope of the Journal is now expanded to include submission in these areas so that high quality submission from industry would also be considered for publication. Specifically, the Journal is soliciting submission in the following areas (alphabetical order): -Advanced Oxidation Nanotechnologies -Bio-Oxidation and Reduction Processes -Catalytic Oxidation -Chemical Oxidation and Reduction Processes -Electrochemical Oxidation -Electrohydraulic Discharge, Cavitation & Sonolysis -Electron Beam & Gamma Irradiation -New Photocatalytic Materials and processes -Non-Thermal Plasma -Ozone-based AOTs -Photochemical Degradation Processes -Sub- and Supercritical Water Oxidation -TiO2 Photocatalytic Redox Processes -UV- and Solar Light-based AOTs -Water-Energy (and Food) Nexus of AOTs