Muhammad Haziq Kamarul Azman, Olivier Meste, D. Latcu, K. Kadir
{"title":"应用递归量化分析和机器学习的心房扑动回路无创定位","authors":"Muhammad Haziq Kamarul Azman, Olivier Meste, D. Latcu, K. Kadir","doi":"10.23919/CinC49843.2019.9005844","DOIUrl":null,"url":null,"abstract":"Atrial flutter presents quasi-periodic atrial activity due to circular depolarization. Given the different structure of right and left atria, spatiotemporal variability should be different. This was analyzed using recurrence quantification analysis. Autocorrelation signals were estimated from the unthresholded recurrence plot, calculated with a properly processed ECG to remove variability related to external sources (noise, respiratory motion, T wave overlap). Simple features were considered from the autocorre-lation that attempts to describe the atrial activity in terms of range of recurrence and periodicity. Linear classification using support vector machines and logistic regression both allowed good classification performance (max accuracy 0.8 for both). Feature selection showed that right and left AFL have significantly different cycle lengths (right vs. left: 230.63 ms vs. 206.50 ms, p < 0.01).","PeriodicalId":6697,"journal":{"name":"2019 Computing in Cardiology (CinC)","volume":"21 1","pages":"Page 1-Page 4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Non-Invasive Localization of Atrial Flutter Circuit Using Recurrence Quantification Analysis and Machine Learning\",\"authors\":\"Muhammad Haziq Kamarul Azman, Olivier Meste, D. Latcu, K. Kadir\",\"doi\":\"10.23919/CinC49843.2019.9005844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atrial flutter presents quasi-periodic atrial activity due to circular depolarization. Given the different structure of right and left atria, spatiotemporal variability should be different. This was analyzed using recurrence quantification analysis. Autocorrelation signals were estimated from the unthresholded recurrence plot, calculated with a properly processed ECG to remove variability related to external sources (noise, respiratory motion, T wave overlap). Simple features were considered from the autocorre-lation that attempts to describe the atrial activity in terms of range of recurrence and periodicity. Linear classification using support vector machines and logistic regression both allowed good classification performance (max accuracy 0.8 for both). Feature selection showed that right and left AFL have significantly different cycle lengths (right vs. left: 230.63 ms vs. 206.50 ms, p < 0.01).\",\"PeriodicalId\":6697,\"journal\":{\"name\":\"2019 Computing in Cardiology (CinC)\",\"volume\":\"21 1\",\"pages\":\"Page 1-Page 4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/CinC49843.2019.9005844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CinC49843.2019.9005844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
心房扑动由于圆去极化而呈现准周期性心房活动。由于左右心房结构不同,其时空变异性也不同。使用递归定量分析进行分析。从无阈值递归图中估计自相关信号,并使用经过适当处理的ECG进行计算,以去除与外部源(噪声、呼吸运动、T波重叠)相关的变异性。简单的特征是考虑自相关,试图描述心房活动的复发和周期性的范围。使用支持向量机的线性分类和逻辑回归都有很好的分类性能(两者的最大准确率为0.8)。特征选择结果显示,左、右AFL的周期长度存在显著差异(左、右分别为230.63 ms和206.50 ms, p < 0.01)。
Non-Invasive Localization of Atrial Flutter Circuit Using Recurrence Quantification Analysis and Machine Learning
Atrial flutter presents quasi-periodic atrial activity due to circular depolarization. Given the different structure of right and left atria, spatiotemporal variability should be different. This was analyzed using recurrence quantification analysis. Autocorrelation signals were estimated from the unthresholded recurrence plot, calculated with a properly processed ECG to remove variability related to external sources (noise, respiratory motion, T wave overlap). Simple features were considered from the autocorre-lation that attempts to describe the atrial activity in terms of range of recurrence and periodicity. Linear classification using support vector machines and logistic regression both allowed good classification performance (max accuracy 0.8 for both). Feature selection showed that right and left AFL have significantly different cycle lengths (right vs. left: 230.63 ms vs. 206.50 ms, p < 0.01).