电子设计自动化中的机器学习:综述

Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong Yang, Yu Wang
{"title":"电子设计自动化中的机器学习:综述","authors":"Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong Yang, Yu Wang","doi":"10.1145/3451179","DOIUrl":null,"url":null,"abstract":"With the down-scaling of CMOS technology, the design complexity of very large-scale integrated is increasing. Although the application of machine learning (ML) techniques in electronic design automation (EDA) can trace its history back to the 1990s, the recent breakthrough of ML and the increasing complexity of EDA tasks have aroused more interest in incorporating ML to solve EDA tasks. In this article, we present a comprehensive review of existing ML for EDA studies, organized following the EDA hierarchy.","PeriodicalId":7063,"journal":{"name":"ACM Trans. Design Autom. Electr. Syst.","volume":"1 1","pages":"40:1-40:46"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"114","resultStr":"{\"title\":\"Machine Learning for Electronic Design Automation: A Survey\",\"authors\":\"Guyue Huang, Jingbo Hu, Yifan He, Jialong Liu, Mingyuan Ma, Zhaoyang Shen, Juejian Wu, Yuanfan Xu, Hengrui Zhang, Kai Zhong, Xuefei Ning, Yuzhe Ma, Haoyu Yang, Bei Yu, Huazhong Yang, Yu Wang\",\"doi\":\"10.1145/3451179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the down-scaling of CMOS technology, the design complexity of very large-scale integrated is increasing. Although the application of machine learning (ML) techniques in electronic design automation (EDA) can trace its history back to the 1990s, the recent breakthrough of ML and the increasing complexity of EDA tasks have aroused more interest in incorporating ML to solve EDA tasks. In this article, we present a comprehensive review of existing ML for EDA studies, organized following the EDA hierarchy.\",\"PeriodicalId\":7063,\"journal\":{\"name\":\"ACM Trans. Design Autom. Electr. Syst.\",\"volume\":\"1 1\",\"pages\":\"40:1-40:46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"114\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Design Autom. Electr. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3451179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Design Autom. Electr. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3451179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114

摘要

随着CMOS技术的小型化,超大规模集成电路的设计复杂度日益增加。虽然机器学习(ML)技术在电子设计自动化(EDA)中的应用可以追溯到20世纪90年代,但最近ML的突破和EDA任务的日益复杂引起了人们对将ML用于解决EDA任务的更多兴趣。在这篇文章中,我们根据EDA的层次结构,对现有的EDA研究进行了全面的回顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning for Electronic Design Automation: A Survey
With the down-scaling of CMOS technology, the design complexity of very large-scale integrated is increasing. Although the application of machine learning (ML) techniques in electronic design automation (EDA) can trace its history back to the 1990s, the recent breakthrough of ML and the increasing complexity of EDA tasks have aroused more interest in incorporating ML to solve EDA tasks. In this article, we present a comprehensive review of existing ML for EDA studies, organized following the EDA hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Level Synthesis Implementation of an Embedded Real-Time HEVC Intra Encoder on FPGA for Media Applications Achieving High In Situ Training Accuracy and Energy Efficiency with Analog Non-Volatile Synaptic Devices A Comprehensive Survey of Attacks without Physical Access Targeting Hardware Vulnerabilities in IoT/IIoT Devices, and Their Detection Mechanisms Improving LDPC Decoding Performance for 3D TLC NAND Flash by LLR Optimization Scheme for Hard and Soft Decision Demand-Driven Multi-Target Sample Preparation on Resource-Constrained Digital Microfluidic Biochips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1