羧酸在过渡金属氧化物上的分解途径

IF 9.3 2区 化学 Q1 CHEMISTRY, PHYSICAL Catalysis Reviews-Science and Engineering Pub Date : 1994-08-01 DOI:10.1080/01614949408009466
S. Rajadurai
{"title":"羧酸在过渡金属氧化物上的分解途径","authors":"S. Rajadurai","doi":"10.1080/01614949408009466","DOIUrl":null,"url":null,"abstract":"Abstract The concept of structure sensitivity is well established for reactions catalyzed by metals as it has been generally demonstrated by the use of supported metal catalysts exhibiting different particle size [l-71. The con-cept of structure sensitivity in catalysis by metal oxides is considerably less well developed than in catalysis by metals, in spite of the growing number of examples of such reactions. Characterization of oxide catalyst is generally more problematical than that of metal; it is difficult, for example, to titrate the active surface areas of supported oxides by chemisorption techniques. Carboxylic acid decomposition could be used as a probe to establish struc-tural dependence and selectivity on metal oxides. For example, in the case of formic acid decomposition, bimolecular decomposition of two adsorbed formates occurs on a surface with Ti4+ cation of fourfold oxygen coordi-znation while unimolecular decomposition occurs in the case of formates adsorbed on Ti4+ fivefold coordinated c...","PeriodicalId":50986,"journal":{"name":"Catalysis Reviews-Science and Engineering","volume":"14 1","pages":"385-403"},"PeriodicalIF":9.3000,"publicationDate":"1994-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Pathways for Carboxylic Acid Decomposition on Transition Metal Oxides\",\"authors\":\"S. Rajadurai\",\"doi\":\"10.1080/01614949408009466\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The concept of structure sensitivity is well established for reactions catalyzed by metals as it has been generally demonstrated by the use of supported metal catalysts exhibiting different particle size [l-71. The con-cept of structure sensitivity in catalysis by metal oxides is considerably less well developed than in catalysis by metals, in spite of the growing number of examples of such reactions. Characterization of oxide catalyst is generally more problematical than that of metal; it is difficult, for example, to titrate the active surface areas of supported oxides by chemisorption techniques. Carboxylic acid decomposition could be used as a probe to establish struc-tural dependence and selectivity on metal oxides. For example, in the case of formic acid decomposition, bimolecular decomposition of two adsorbed formates occurs on a surface with Ti4+ cation of fourfold oxygen coordi-znation while unimolecular decomposition occurs in the case of formates adsorbed on Ti4+ fivefold coordinated c...\",\"PeriodicalId\":50986,\"journal\":{\"name\":\"Catalysis Reviews-Science and Engineering\",\"volume\":\"14 1\",\"pages\":\"385-403\"},\"PeriodicalIF\":9.3000,\"publicationDate\":\"1994-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Reviews-Science and Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/01614949408009466\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Reviews-Science and Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/01614949408009466","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 89

摘要

摘要对于金属催化的反应,结构敏感性的概念已经很好地建立起来,因为它已经通过使用不同粒径的负载金属催化剂得到了普遍的证明[l-71]。尽管这种反应的例子越来越多,但金属氧化物催化的结构敏感性的概念远不如金属催化的结构敏感性发展得好。氧化物催化剂的表征通常比金属催化剂的表征更有问题;例如,用化学吸附技术滴定负载氧化物的活性表面积是很困难的。羧酸分解可以作为建立对金属氧化物的结构依赖性和选择性的探针。例如,甲酸分解时,两种吸附的甲酸酯在四倍氧配位的Ti4+阳离子表面发生双分子分解,而甲酸酯在Ti4+五倍氧配位的c表面发生单分子分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pathways for Carboxylic Acid Decomposition on Transition Metal Oxides
Abstract The concept of structure sensitivity is well established for reactions catalyzed by metals as it has been generally demonstrated by the use of supported metal catalysts exhibiting different particle size [l-71. The con-cept of structure sensitivity in catalysis by metal oxides is considerably less well developed than in catalysis by metals, in spite of the growing number of examples of such reactions. Characterization of oxide catalyst is generally more problematical than that of metal; it is difficult, for example, to titrate the active surface areas of supported oxides by chemisorption techniques. Carboxylic acid decomposition could be used as a probe to establish struc-tural dependence and selectivity on metal oxides. For example, in the case of formic acid decomposition, bimolecular decomposition of two adsorbed formates occurs on a surface with Ti4+ cation of fourfold oxygen coordi-znation while unimolecular decomposition occurs in the case of formates adsorbed on Ti4+ fivefold coordinated c...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
22.30
自引率
2.80%
发文量
29
期刊介绍: Catalysis Reviews is dedicated to fostering interdisciplinary perspectives in catalytic science and engineering, catering to a global audience of industrial and academic researchers. This journal serves as a bridge between the realms of heterogeneous, homogeneous, and bio-catalysis, providing a crucial and critical evaluation of the current state of catalytic science and engineering. Published topics encompass advances in technology and theory, engineering and chemical aspects of catalytic reactions, reactor design, computer models, analytical tools, and statistical evaluations.
期刊最新文献
L-Proline: Unraveling its Reactivity and Mechanistic Insights as an Organocatalyst in Multi-Component Synthesis: A Comprehensive Review Zeolite Catalysts for Biomass Valorization: Tuning of active sites for promoting reactivity Best practices in catalyst screening Multi-metallic electrocatalysts as emerging class of materials: opportunities and challenges in the synthesis, characterization, and applications Challenges of heterogeneous catalytic wet air oxidation processes and potential applications on emerging contaminants loaded wastewater treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1