I. Hakam, Niall Toomey, S. Ghose, J. Ponthier, Jeremy Zimmerman
{"title":"沙特阿拉伯和科威特PZ分区下白垩统Ratawi段地层圈闭潜力","authors":"I. Hakam, Niall Toomey, S. Ghose, J. Ponthier, Jeremy Zimmerman","doi":"10.2118/204733-ms","DOIUrl":null,"url":null,"abstract":"\n The Lower Cretaceous Ratawi Oolite Formation is among the most prolific reservoirs in the PZ, having produced a significant amount of oil since the 1950's. The Ratawi is interpreted as a low angle carbonate ramp, with high-energy grainstone facies developing on structural highs. Production is focused on these structural highs, with very few well penetrations off structure. Recent work has identified potential Ratawi stratigraphic traps in prograding clinoforms along the flanks of the North Fuwaris structural high.\n Core data from Ratawi wells illustrate the interplay of depositional environment and diagenesis on reservoir quality. Gross depositional environment (GDE) maps created from the integration of seismic facies and core observations indicate the stratigraphic trap lies in the ramp slope. Reservoir quality variability of the ramp slope across the PZ is explained by the diagenetic history of the Ratawi. Early equant calcite cement develops from substantial meteoric runoff and lowers porosity, while later dissolution enhances reservoir quality. The area of interest is isolated from potential meteoric inputs; we do not expect equant calcite cement or the associated reduction in reservoir quality.\n Seismic interpretation was performed on recently acquired PZ 3D data to map the Ratawi section. Clinoforms (inclined geometry) were mapped along the western flank of the North Fuwaris high. These facies appear to have developed as a result of progradation to the NW and are indicative of good reservoir development. Leads were generated using the depth structure and GDE maps, supported by amplitude extraction and seismic inversion volumes. Amplitudes extracted from the clinoform shows that the strongest anomaly is along the structurally highest part of the horizon and the anomaly weakens downdip. High amplitudes could be a proxy for reservoir (porosity), and sharp turn-off in amplitude might indicate that lateral and updip facies changes to non-reservoir which is needed for an effective seal. Recent seismic inversion performed on the Ratawi interval shows a good match between the Acoustic Impedance (AI) from logs and the computed AI from the seismic. The Ratawi Oolite appears as a low impedance interval between overlying Ratawi Limestone and underlying Makhul. Porosity estimated from AI volumes appear to support possible Ratawi reservoir development along the flanks of North Fuwaris and Wafra highs.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stratigraphic Trap Potential in the Lower Cretaceous Ratawi Interval, Partitioned Zone PZ, Saudi Arabia and Kuwait\",\"authors\":\"I. Hakam, Niall Toomey, S. Ghose, J. Ponthier, Jeremy Zimmerman\",\"doi\":\"10.2118/204733-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Lower Cretaceous Ratawi Oolite Formation is among the most prolific reservoirs in the PZ, having produced a significant amount of oil since the 1950's. The Ratawi is interpreted as a low angle carbonate ramp, with high-energy grainstone facies developing on structural highs. Production is focused on these structural highs, with very few well penetrations off structure. Recent work has identified potential Ratawi stratigraphic traps in prograding clinoforms along the flanks of the North Fuwaris structural high.\\n Core data from Ratawi wells illustrate the interplay of depositional environment and diagenesis on reservoir quality. Gross depositional environment (GDE) maps created from the integration of seismic facies and core observations indicate the stratigraphic trap lies in the ramp slope. Reservoir quality variability of the ramp slope across the PZ is explained by the diagenetic history of the Ratawi. Early equant calcite cement develops from substantial meteoric runoff and lowers porosity, while later dissolution enhances reservoir quality. The area of interest is isolated from potential meteoric inputs; we do not expect equant calcite cement or the associated reduction in reservoir quality.\\n Seismic interpretation was performed on recently acquired PZ 3D data to map the Ratawi section. Clinoforms (inclined geometry) were mapped along the western flank of the North Fuwaris high. These facies appear to have developed as a result of progradation to the NW and are indicative of good reservoir development. Leads were generated using the depth structure and GDE maps, supported by amplitude extraction and seismic inversion volumes. Amplitudes extracted from the clinoform shows that the strongest anomaly is along the structurally highest part of the horizon and the anomaly weakens downdip. High amplitudes could be a proxy for reservoir (porosity), and sharp turn-off in amplitude might indicate that lateral and updip facies changes to non-reservoir which is needed for an effective seal. Recent seismic inversion performed on the Ratawi interval shows a good match between the Acoustic Impedance (AI) from logs and the computed AI from the seismic. The Ratawi Oolite appears as a low impedance interval between overlying Ratawi Limestone and underlying Makhul. Porosity estimated from AI volumes appear to support possible Ratawi reservoir development along the flanks of North Fuwaris and Wafra highs.\",\"PeriodicalId\":11320,\"journal\":{\"name\":\"Day 3 Tue, November 30, 2021\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Tue, November 30, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204733-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204733-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stratigraphic Trap Potential in the Lower Cretaceous Ratawi Interval, Partitioned Zone PZ, Saudi Arabia and Kuwait
The Lower Cretaceous Ratawi Oolite Formation is among the most prolific reservoirs in the PZ, having produced a significant amount of oil since the 1950's. The Ratawi is interpreted as a low angle carbonate ramp, with high-energy grainstone facies developing on structural highs. Production is focused on these structural highs, with very few well penetrations off structure. Recent work has identified potential Ratawi stratigraphic traps in prograding clinoforms along the flanks of the North Fuwaris structural high.
Core data from Ratawi wells illustrate the interplay of depositional environment and diagenesis on reservoir quality. Gross depositional environment (GDE) maps created from the integration of seismic facies and core observations indicate the stratigraphic trap lies in the ramp slope. Reservoir quality variability of the ramp slope across the PZ is explained by the diagenetic history of the Ratawi. Early equant calcite cement develops from substantial meteoric runoff and lowers porosity, while later dissolution enhances reservoir quality. The area of interest is isolated from potential meteoric inputs; we do not expect equant calcite cement or the associated reduction in reservoir quality.
Seismic interpretation was performed on recently acquired PZ 3D data to map the Ratawi section. Clinoforms (inclined geometry) were mapped along the western flank of the North Fuwaris high. These facies appear to have developed as a result of progradation to the NW and are indicative of good reservoir development. Leads were generated using the depth structure and GDE maps, supported by amplitude extraction and seismic inversion volumes. Amplitudes extracted from the clinoform shows that the strongest anomaly is along the structurally highest part of the horizon and the anomaly weakens downdip. High amplitudes could be a proxy for reservoir (porosity), and sharp turn-off in amplitude might indicate that lateral and updip facies changes to non-reservoir which is needed for an effective seal. Recent seismic inversion performed on the Ratawi interval shows a good match between the Acoustic Impedance (AI) from logs and the computed AI from the seismic. The Ratawi Oolite appears as a low impedance interval between overlying Ratawi Limestone and underlying Makhul. Porosity estimated from AI volumes appear to support possible Ratawi reservoir development along the flanks of North Fuwaris and Wafra highs.