对流层臭氧升高对芒哥品种的影响

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2021-12-12 DOI:10.1080/01919512.2021.2009332
P. Dhevagi, A. Ramya, S. Priyatharshini, R. Poornima
{"title":"对流层臭氧升高对芒哥品种的影响","authors":"P. Dhevagi, A. Ramya, S. Priyatharshini, R. Poornima","doi":"10.1080/01919512.2021.2009332","DOIUrl":null,"url":null,"abstract":"ABSTRACT Tropospheric ozone (O3) is widely recognized as the most critical, regional atmospheric pollutant causing significant losses to agricultural productivity due to its phytotoxicity over agricultural areas and is expected to increase in future. In view of rising tropospheric ozone concentration over Indian regions, the present study aimed to evaluate the effect of elevated ozone stress on pulse crop blackgram (Vigna mungo L.), which contributes the major share of protein. The blackgram varieties namely CO 6, VBN 1, VBN 2, VBN 3, VBN 5, VBN 6, VBN 7, and VBN 8 were grown in open top chambers and factorial completely randomized block design was followed. The plants were exposed to elevated ozone concentration (50 and 100 ppb) from 10.00 h to 17.00 h over 10 days at flowering stage, with a weighted average ozone concentration of 50.1 and 101.2 ppb. Both the elevated ozone treatments significantly affected the plant physiological, biochemical, growth, and yield traits of all test varieties. On an average across eight blackgram varieties, decrease in chlorophyll content by 33.83 and 42.41%, stomatal conductance by 28.25 and 40.51% and photosynthetic rate by 29.43 and 42.30% exposed to 50 and 100 ppb ozone were observed, respectively. Correspondingly, the number of pods per plant decreased by 30.82 and 32.65%, 100 grain weight by 7.75 and 21.23% and plant weight by 16.03 and 21.23%, respectively, which were significant at 5% level. Furthermore in the observed traits, significantly higher reduction was observed in VBN3, while the least reduction was observed in VBN8. The path analysis displayed that all the observed physiological, biochemical, growth, and yield traits positively regulated the yield except leaf injury percentage, malondialdehyde, and proline content. The principal component analysis of two elevated ozone treatments confirmed VBN8 as ozone tolerant and VBN3 as ozone sensitive variety. Hence, cultivation of VBN8 variety at ozone hotspot regions would be the best option to overcome ozone induced yield loss.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Effect of Elevated Tropospheric Ozone on Vigna Mungo L. Varieties\",\"authors\":\"P. Dhevagi, A. Ramya, S. Priyatharshini, R. Poornima\",\"doi\":\"10.1080/01919512.2021.2009332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Tropospheric ozone (O3) is widely recognized as the most critical, regional atmospheric pollutant causing significant losses to agricultural productivity due to its phytotoxicity over agricultural areas and is expected to increase in future. In view of rising tropospheric ozone concentration over Indian regions, the present study aimed to evaluate the effect of elevated ozone stress on pulse crop blackgram (Vigna mungo L.), which contributes the major share of protein. The blackgram varieties namely CO 6, VBN 1, VBN 2, VBN 3, VBN 5, VBN 6, VBN 7, and VBN 8 were grown in open top chambers and factorial completely randomized block design was followed. The plants were exposed to elevated ozone concentration (50 and 100 ppb) from 10.00 h to 17.00 h over 10 days at flowering stage, with a weighted average ozone concentration of 50.1 and 101.2 ppb. Both the elevated ozone treatments significantly affected the plant physiological, biochemical, growth, and yield traits of all test varieties. On an average across eight blackgram varieties, decrease in chlorophyll content by 33.83 and 42.41%, stomatal conductance by 28.25 and 40.51% and photosynthetic rate by 29.43 and 42.30% exposed to 50 and 100 ppb ozone were observed, respectively. Correspondingly, the number of pods per plant decreased by 30.82 and 32.65%, 100 grain weight by 7.75 and 21.23% and plant weight by 16.03 and 21.23%, respectively, which were significant at 5% level. Furthermore in the observed traits, significantly higher reduction was observed in VBN3, while the least reduction was observed in VBN8. The path analysis displayed that all the observed physiological, biochemical, growth, and yield traits positively regulated the yield except leaf injury percentage, malondialdehyde, and proline content. The principal component analysis of two elevated ozone treatments confirmed VBN8 as ozone tolerant and VBN3 as ozone sensitive variety. Hence, cultivation of VBN8 variety at ozone hotspot regions would be the best option to overcome ozone induced yield loss.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/01919512.2021.2009332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/01919512.2021.2009332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 8

摘要

对流层臭氧(O3)被广泛认为是最关键的区域性大气污染物,由于其对农业地区的植物毒性而对农业生产力造成重大损失,并且预计未来会增加。鉴于印度地区对流层臭氧浓度上升,本研究旨在评估臭氧胁迫升高对脉冲作物黑豆(Vigna mungo L.)的影响,黑豆是蛋白质的主要来源。选用co6、VBN 1、VBN 2、VBN 3、VBN 5、VBN 6、VBN 7和VBN 8为黑图品种,采用全随机区组设计。花期10 d内臭氧浓度分别为50和100 ppb,处理时间为10.00 ~ 17.00 h,臭氧加权平均浓度分别为50.1和101.2 ppb。两种臭氧处理对所有试验品种的植株生理生化、生长和产量性状均有显著影响。在50和100 ppb臭氧处理下,8个黑革品种的叶绿素含量、气孔导度和光合速率分别下降了33.83%和42.41%、28.25%和40.51%、29.43%和42.30%。在5%水平下,单株荚果数、百粒重和单株重分别减少30.82%和32.65%、7.75%和21.23%,单株重分别减少16.03和21.23%,差异均显著。此外,在观察到的性状中,VBN3的减少幅度显著高于VBN8,而VBN8的减少幅度最小。通径分析表明,除叶片伤害率、丙二醛和脯氨酸含量外,其余生理、生化、生长和产量性状均对产量有正向调节作用。两种臭氧处理的主成分分析证实VBN8为臭氧耐受性品种,VBN3为臭氧敏感性品种。因此,在臭氧热点地区种植VBN8品种将是克服臭氧诱导产量损失的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Elevated Tropospheric Ozone on Vigna Mungo L. Varieties
ABSTRACT Tropospheric ozone (O3) is widely recognized as the most critical, regional atmospheric pollutant causing significant losses to agricultural productivity due to its phytotoxicity over agricultural areas and is expected to increase in future. In view of rising tropospheric ozone concentration over Indian regions, the present study aimed to evaluate the effect of elevated ozone stress on pulse crop blackgram (Vigna mungo L.), which contributes the major share of protein. The blackgram varieties namely CO 6, VBN 1, VBN 2, VBN 3, VBN 5, VBN 6, VBN 7, and VBN 8 were grown in open top chambers and factorial completely randomized block design was followed. The plants were exposed to elevated ozone concentration (50 and 100 ppb) from 10.00 h to 17.00 h over 10 days at flowering stage, with a weighted average ozone concentration of 50.1 and 101.2 ppb. Both the elevated ozone treatments significantly affected the plant physiological, biochemical, growth, and yield traits of all test varieties. On an average across eight blackgram varieties, decrease in chlorophyll content by 33.83 and 42.41%, stomatal conductance by 28.25 and 40.51% and photosynthetic rate by 29.43 and 42.30% exposed to 50 and 100 ppb ozone were observed, respectively. Correspondingly, the number of pods per plant decreased by 30.82 and 32.65%, 100 grain weight by 7.75 and 21.23% and plant weight by 16.03 and 21.23%, respectively, which were significant at 5% level. Furthermore in the observed traits, significantly higher reduction was observed in VBN3, while the least reduction was observed in VBN8. The path analysis displayed that all the observed physiological, biochemical, growth, and yield traits positively regulated the yield except leaf injury percentage, malondialdehyde, and proline content. The principal component analysis of two elevated ozone treatments confirmed VBN8 as ozone tolerant and VBN3 as ozone sensitive variety. Hence, cultivation of VBN8 variety at ozone hotspot regions would be the best option to overcome ozone induced yield loss.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1