{"title":"从纺锤形到球形:球形是人类间充质干细胞分化能力增强的潜在预测因子吗?","authors":"Jing Li , Shu Zhang , Jun Chen , Zongren Wang","doi":"10.1016/j.bihy.2009.06.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>Because human mesenchymal stem cells (hMSCs) can proliferate indefinitely in an undifferentiated state and differentiate into various cell types, hMSCs are expected to be useful for cell replacement therapy. But the clinic application is limited by its differentiation efficiency of hMSCs. It has been proved that cells can be geometrically switched between gene programs for growth, apoptosis and differentiation. Previous studies showed that hMSCs started showing round when exposed to modeled </span>microgravity (MMG), while their differentiation capability seemed enhanced simultaneously. Thus, this article briefly reviews such studies, and hypothesizes that “spherical shape” could be a potential predictor of hMSCs with potentiated differentiation capability.</p></div>","PeriodicalId":87894,"journal":{"name":"Bioscience hypotheses","volume":"2 6","pages":"Pages 407-409"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bihy.2009.06.004","citationCount":"0","resultStr":"{\"title\":\"From spindle to spherical: Is spherical shape a potential predictor of human mesenchymal stem cells with increased differentiation capability?\",\"authors\":\"Jing Li , Shu Zhang , Jun Chen , Zongren Wang\",\"doi\":\"10.1016/j.bihy.2009.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Because human mesenchymal stem cells (hMSCs) can proliferate indefinitely in an undifferentiated state and differentiate into various cell types, hMSCs are expected to be useful for cell replacement therapy. But the clinic application is limited by its differentiation efficiency of hMSCs. It has been proved that cells can be geometrically switched between gene programs for growth, apoptosis and differentiation. Previous studies showed that hMSCs started showing round when exposed to modeled </span>microgravity (MMG), while their differentiation capability seemed enhanced simultaneously. Thus, this article briefly reviews such studies, and hypothesizes that “spherical shape” could be a potential predictor of hMSCs with potentiated differentiation capability.</p></div>\",\"PeriodicalId\":87894,\"journal\":{\"name\":\"Bioscience hypotheses\",\"volume\":\"2 6\",\"pages\":\"Pages 407-409\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bihy.2009.06.004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience hypotheses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1756239209001037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience hypotheses","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1756239209001037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
From spindle to spherical: Is spherical shape a potential predictor of human mesenchymal stem cells with increased differentiation capability?
Because human mesenchymal stem cells (hMSCs) can proliferate indefinitely in an undifferentiated state and differentiate into various cell types, hMSCs are expected to be useful for cell replacement therapy. But the clinic application is limited by its differentiation efficiency of hMSCs. It has been proved that cells can be geometrically switched between gene programs for growth, apoptosis and differentiation. Previous studies showed that hMSCs started showing round when exposed to modeled microgravity (MMG), while their differentiation capability seemed enhanced simultaneously. Thus, this article briefly reviews such studies, and hypothesizes that “spherical shape” could be a potential predictor of hMSCs with potentiated differentiation capability.