{"title":"LSCF-SDC复合阴极固体氧化物燃料电池的性能研究","authors":"G. DiGiuseppe, V. Boddapati","doi":"10.1155/2018/4041960","DOIUrl":null,"url":null,"abstract":"This paper reports the study of an anode-supported SOFC cell containing an LSCF-SDC composite cathode. The SOFC cell was tested at different temperatures and reactant flow rates. After testing, the cell was sectioned and characterized using SEM/EDS. Such analysis indicated that no structural damage and no significant interdiffusion of elements among the layers occurred. The measured electrochemical performance data at different temperatures indicate an Arrhenius behavior or temperature activated processes. The low-porosity anode functional layer appears to be very sensitive to low hydrogen contents. The electrochemical performance is also affected by changing air flow rates.","PeriodicalId":30572,"journal":{"name":"Journal of Energy","volume":"115 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Characterization of Solid Oxide Fuel Cells with LSCF-SDC Composite Cathodes\",\"authors\":\"G. DiGiuseppe, V. Boddapati\",\"doi\":\"10.1155/2018/4041960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the study of an anode-supported SOFC cell containing an LSCF-SDC composite cathode. The SOFC cell was tested at different temperatures and reactant flow rates. After testing, the cell was sectioned and characterized using SEM/EDS. Such analysis indicated that no structural damage and no significant interdiffusion of elements among the layers occurred. The measured electrochemical performance data at different temperatures indicate an Arrhenius behavior or temperature activated processes. The low-porosity anode functional layer appears to be very sensitive to low hydrogen contents. The electrochemical performance is also affected by changing air flow rates.\",\"PeriodicalId\":30572,\"journal\":{\"name\":\"Journal of Energy\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/4041960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/4041960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization of Solid Oxide Fuel Cells with LSCF-SDC Composite Cathodes
This paper reports the study of an anode-supported SOFC cell containing an LSCF-SDC composite cathode. The SOFC cell was tested at different temperatures and reactant flow rates. After testing, the cell was sectioned and characterized using SEM/EDS. Such analysis indicated that no structural damage and no significant interdiffusion of elements among the layers occurred. The measured electrochemical performance data at different temperatures indicate an Arrhenius behavior or temperature activated processes. The low-porosity anode functional layer appears to be very sensitive to low hydrogen contents. The electrochemical performance is also affected by changing air flow rates.