{"title":"桥梁监测数据的组合贝叶斯动态线性模型及可靠性预测","authors":"Xueping Fan, Yuefei Liu","doi":"10.1155/2016/3648126","DOIUrl":null,"url":null,"abstract":"Considering the uncertainties and randomness of the mass structural health monitored data, the objectives of this paper are to present (a) a procedure for effective incorporation of the monitored data for the reliability prediction of structural components or structures, (b) one transforming method of Bayesian dynamic linear models (BDLMs) based on 1-order polynomial function, (c) model monitoring mechanism used to look for possible abnormal data based on BDLMs, (d) combinatorial Bayesian dynamic linear models based on the multiple BDLMs and their corresponding weights of prediction precision, and (e) an effective way of taking advantage of combinatorial Bayesian dynamic linear models to incorporate the historical data and real-time data in structural time-variant reliability prediction. Finally, a numerical example is provided to illustrate the application and feasibility of the proposed procedures and concepts.","PeriodicalId":31263,"journal":{"name":"工程设计学报","volume":"10 1","pages":"1-11"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combinatorial Bayesian Dynamic Linear Models of Bridge Monitored Data and Reliability Prediction\",\"authors\":\"Xueping Fan, Yuefei Liu\",\"doi\":\"10.1155/2016/3648126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considering the uncertainties and randomness of the mass structural health monitored data, the objectives of this paper are to present (a) a procedure for effective incorporation of the monitored data for the reliability prediction of structural components or structures, (b) one transforming method of Bayesian dynamic linear models (BDLMs) based on 1-order polynomial function, (c) model monitoring mechanism used to look for possible abnormal data based on BDLMs, (d) combinatorial Bayesian dynamic linear models based on the multiple BDLMs and their corresponding weights of prediction precision, and (e) an effective way of taking advantage of combinatorial Bayesian dynamic linear models to incorporate the historical data and real-time data in structural time-variant reliability prediction. Finally, a numerical example is provided to illustrate the application and feasibility of the proposed procedures and concepts.\",\"PeriodicalId\":31263,\"journal\":{\"name\":\"工程设计学报\",\"volume\":\"10 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"工程设计学报\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1155/2016/3648126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"工程设计学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1155/2016/3648126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Combinatorial Bayesian Dynamic Linear Models of Bridge Monitored Data and Reliability Prediction
Considering the uncertainties and randomness of the mass structural health monitored data, the objectives of this paper are to present (a) a procedure for effective incorporation of the monitored data for the reliability prediction of structural components or structures, (b) one transforming method of Bayesian dynamic linear models (BDLMs) based on 1-order polynomial function, (c) model monitoring mechanism used to look for possible abnormal data based on BDLMs, (d) combinatorial Bayesian dynamic linear models based on the multiple BDLMs and their corresponding weights of prediction precision, and (e) an effective way of taking advantage of combinatorial Bayesian dynamic linear models to incorporate the historical data and real-time data in structural time-variant reliability prediction. Finally, a numerical example is provided to illustrate the application and feasibility of the proposed procedures and concepts.
期刊介绍:
Chinese Journal of Engineering Design is a reputable journal published by Zhejiang University Press Co., Ltd. It was founded in December, 1994 as the first internationally cooperative journal in the area of engineering design research. Administrated by the Ministry of Education of China, it is sponsored by both Zhejiang University and Chinese Society of Mechanical Engineering. Zhejiang University Press Co., Ltd. is fully responsible for its bimonthly domestic and oversea publication. Its page is in A4 size. This journal is devoted to reporting most up-to-date achievements of engineering design researches and therefore, to promote the communications of academic researches and their applications to industry. Achievments of great creativity and practicablity are extraordinarily desirable. Aiming at supplying designers, developers and researchers of diversified technical artifacts with valuable references, its content covers all aspects of design theory and methodology, as well as its enabling environment, for instance, creative design, concurrent design, conceptual design, intelligent design, web-based design, reverse engineering design, industrial design, design optimization, tribology, design by biological analogy, virtual reality in design, structural analysis and design, design knowledge representation, design knowledge management, design decision-making systems, etc.