E. Mitchell, Joseph J. Noh, Siyan Li, William S. Armstrong, Ananth Agarwal, Patrick Liu, Chelsea Finn, Christopher D. Manning
{"title":"通过自然语言推理增强预训练语言模型的自一致性和性能","authors":"E. Mitchell, Joseph J. Noh, Siyan Li, William S. Armstrong, Ananth Agarwal, Patrick Liu, Chelsea Finn, Christopher D. Manning","doi":"10.48550/arXiv.2211.11875","DOIUrl":null,"url":null,"abstract":"While large pre-trained language models are powerful, their predictions often lack logical consistency across test inputs. For example, a state-of-the-art Macaw question-answering (QA) model answers Yes to Is a sparrow a bird? and Does a bird have feet? but answers No to Does a sparrow have feet?. To address this failure mode, we propose a framework, Consistency Correction through Relation Detection, or ConCoRD, for boosting the consistency and accuracy of pre-trained NLP models using pre-trained natural language inference (NLI) models without fine-tuning or re-training. Given a batch of test inputs, ConCoRD samples several candidate outputs for each input and instantiates a factor graph that accounts for both the model’s belief about the likelihood of each answer choice in isolation and the NLI model’s beliefs about pair-wise answer choice compatibility. We show that a weighted MaxSAT solver can efficiently compute high-quality answer choices under this factor graph, improving over the raw model’s predictions. Our experiments demonstrate that ConCoRD consistently boosts accuracy and consistency of off-the-shelf closed-book QA and VQA models using off-the-shelf NLI models, notably increasing accuracy of LXMERT on ConVQA by 5% absolute. See the project website (https://ericmitchell.ai/emnlp-2022-concord/) for code and data.","PeriodicalId":74540,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","volume":"10 1","pages":"1754-1768"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference\",\"authors\":\"E. Mitchell, Joseph J. Noh, Siyan Li, William S. Armstrong, Ananth Agarwal, Patrick Liu, Chelsea Finn, Christopher D. Manning\",\"doi\":\"10.48550/arXiv.2211.11875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"While large pre-trained language models are powerful, their predictions often lack logical consistency across test inputs. For example, a state-of-the-art Macaw question-answering (QA) model answers Yes to Is a sparrow a bird? and Does a bird have feet? but answers No to Does a sparrow have feet?. To address this failure mode, we propose a framework, Consistency Correction through Relation Detection, or ConCoRD, for boosting the consistency and accuracy of pre-trained NLP models using pre-trained natural language inference (NLI) models without fine-tuning or re-training. Given a batch of test inputs, ConCoRD samples several candidate outputs for each input and instantiates a factor graph that accounts for both the model’s belief about the likelihood of each answer choice in isolation and the NLI model’s beliefs about pair-wise answer choice compatibility. We show that a weighted MaxSAT solver can efficiently compute high-quality answer choices under this factor graph, improving over the raw model’s predictions. Our experiments demonstrate that ConCoRD consistently boosts accuracy and consistency of off-the-shelf closed-book QA and VQA models using off-the-shelf NLI models, notably increasing accuracy of LXMERT on ConVQA by 5% absolute. See the project website (https://ericmitchell.ai/emnlp-2022-concord/) for code and data.\",\"PeriodicalId\":74540,\"journal\":{\"name\":\"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing\",\"volume\":\"10 1\",\"pages\":\"1754-1768\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2211.11875\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.11875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing Self-Consistency and Performance of Pre-Trained Language Models through Natural Language Inference
While large pre-trained language models are powerful, their predictions often lack logical consistency across test inputs. For example, a state-of-the-art Macaw question-answering (QA) model answers Yes to Is a sparrow a bird? and Does a bird have feet? but answers No to Does a sparrow have feet?. To address this failure mode, we propose a framework, Consistency Correction through Relation Detection, or ConCoRD, for boosting the consistency and accuracy of pre-trained NLP models using pre-trained natural language inference (NLI) models without fine-tuning or re-training. Given a batch of test inputs, ConCoRD samples several candidate outputs for each input and instantiates a factor graph that accounts for both the model’s belief about the likelihood of each answer choice in isolation and the NLI model’s beliefs about pair-wise answer choice compatibility. We show that a weighted MaxSAT solver can efficiently compute high-quality answer choices under this factor graph, improving over the raw model’s predictions. Our experiments demonstrate that ConCoRD consistently boosts accuracy and consistency of off-the-shelf closed-book QA and VQA models using off-the-shelf NLI models, notably increasing accuracy of LXMERT on ConVQA by 5% absolute. See the project website (https://ericmitchell.ai/emnlp-2022-concord/) for code and data.