M. Vishalatchi, V. Kalaiselvi, P. Yasotha, B. Blessymol
{"title":"纳米氧化铁的生态友好合成-抗菌活性","authors":"M. Vishalatchi, V. Kalaiselvi, P. Yasotha, B. Blessymol","doi":"10.13074/jent.2022.09.223459","DOIUrl":null,"url":null,"abstract":"Ferric oxide nanoparticles were synthesized by eco-friendly green synthesis and chemical synthesis methods. FeO nanoparticles were synthesized by Chemical co-precipitation method associated with microwave irradiation method and were characterized by XRD, FTIR, SEM, EDAX and Antibacterial Activity. The X-ray Diffraction (XRD) pattern analysis has revealed the crystal structure of FeO. The FTIR pattern has represented the functional groups of the prepared sample. The morphology and purity of the samples were analyzed by using Scanning Electron Microscopy and Energy Dispersion X-ray Diffraction analysis. The Antibacterial activity of the FeO nanoparticles were tested with gram positive Staphylococcus aureus and Bacillus subtilis, gram negative Escherichia coli and Pseudomonas aeruginosa. The results matched well with the standard values.","PeriodicalId":36296,"journal":{"name":"Journal of Water and Environmental Nanotechnology","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Eco-friendly Synthesis of Ferric Oxide Nanoparticles - Antimicrobial Activity\",\"authors\":\"M. Vishalatchi, V. Kalaiselvi, P. Yasotha, B. Blessymol\",\"doi\":\"10.13074/jent.2022.09.223459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ferric oxide nanoparticles were synthesized by eco-friendly green synthesis and chemical synthesis methods. FeO nanoparticles were synthesized by Chemical co-precipitation method associated with microwave irradiation method and were characterized by XRD, FTIR, SEM, EDAX and Antibacterial Activity. The X-ray Diffraction (XRD) pattern analysis has revealed the crystal structure of FeO. The FTIR pattern has represented the functional groups of the prepared sample. The morphology and purity of the samples were analyzed by using Scanning Electron Microscopy and Energy Dispersion X-ray Diffraction analysis. The Antibacterial activity of the FeO nanoparticles were tested with gram positive Staphylococcus aureus and Bacillus subtilis, gram negative Escherichia coli and Pseudomonas aeruginosa. The results matched well with the standard values.\",\"PeriodicalId\":36296,\"journal\":{\"name\":\"Journal of Water and Environmental Nanotechnology\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environmental Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13074/jent.2022.09.223459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environmental Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13074/jent.2022.09.223459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
Eco-friendly Synthesis of Ferric Oxide Nanoparticles - Antimicrobial Activity
Ferric oxide nanoparticles were synthesized by eco-friendly green synthesis and chemical synthesis methods. FeO nanoparticles were synthesized by Chemical co-precipitation method associated with microwave irradiation method and were characterized by XRD, FTIR, SEM, EDAX and Antibacterial Activity. The X-ray Diffraction (XRD) pattern analysis has revealed the crystal structure of FeO. The FTIR pattern has represented the functional groups of the prepared sample. The morphology and purity of the samples were analyzed by using Scanning Electron Microscopy and Energy Dispersion X-ray Diffraction analysis. The Antibacterial activity of the FeO nanoparticles were tested with gram positive Staphylococcus aureus and Bacillus subtilis, gram negative Escherichia coli and Pseudomonas aeruginosa. The results matched well with the standard values.