基于概念拓扑的大内容分层分类

Q2 Social Sciences Journal of Library Metadata Pub Date : 2018-10-02 DOI:10.1080/19386389.2018.1538610
Andrew Yates, Daniel S. Dotson, Stephanie J. Schulte, R. Ramnath
{"title":"基于概念拓扑的大内容分层分类","authors":"Andrew Yates, Daniel S. Dotson, Stephanie J. Schulte, R. Ramnath","doi":"10.1080/19386389.2018.1538610","DOIUrl":null,"url":null,"abstract":"Abstract Methods that are both computationally feasible and practically effective are needed to make sense of big corpuses of content, or “big content.” For example, supervised categorization techniques for open-access academic publishing are ill-suited for automated categorization because they rely on an existing categorization scheme, but no supervised scheme can stay abreast of the rapidly evolving landscape of scholarly work. This problem also applies to any domain with very large document corpuses where no good categorization scheme exists. To address this challenge, we present an unsupervised method to fit a hierarchical categorization scheme to a corpus based on clustering the network of shared concepts in the corpus, or its “concept topology.” Our method potentially applies to any type of content, and it scales to large networks of millions of vertices. We have demonstrated the application of our method to a corpus of 1.5 million scholarly texts representing the majority of open access (OA) academic publications on the web, validating our results using expert librarian annotations. We have made our datasets openly accessible for research by others. We believe that our resulting categorization scheme best represents OA academic publishing as it exists today.","PeriodicalId":39057,"journal":{"name":"Journal of Library Metadata","volume":"46 1","pages":"113 - 134"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Categorization of Big Content Using Concept Topology\",\"authors\":\"Andrew Yates, Daniel S. Dotson, Stephanie J. Schulte, R. Ramnath\",\"doi\":\"10.1080/19386389.2018.1538610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Methods that are both computationally feasible and practically effective are needed to make sense of big corpuses of content, or “big content.” For example, supervised categorization techniques for open-access academic publishing are ill-suited for automated categorization because they rely on an existing categorization scheme, but no supervised scheme can stay abreast of the rapidly evolving landscape of scholarly work. This problem also applies to any domain with very large document corpuses where no good categorization scheme exists. To address this challenge, we present an unsupervised method to fit a hierarchical categorization scheme to a corpus based on clustering the network of shared concepts in the corpus, or its “concept topology.” Our method potentially applies to any type of content, and it scales to large networks of millions of vertices. We have demonstrated the application of our method to a corpus of 1.5 million scholarly texts representing the majority of open access (OA) academic publications on the web, validating our results using expert librarian annotations. We have made our datasets openly accessible for research by others. We believe that our resulting categorization scheme best represents OA academic publishing as it exists today.\",\"PeriodicalId\":39057,\"journal\":{\"name\":\"Journal of Library Metadata\",\"volume\":\"46 1\",\"pages\":\"113 - 134\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Library Metadata\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19386389.2018.1538610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Library Metadata","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19386389.2018.1538610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要要理解内容的大语料库或“大内容”,需要既在计算上可行又在实践上有效的方法。例如,开放获取学术出版的监督分类技术不适合自动分类,因为它们依赖于现有的分类方案,但是没有监督方案可以跟上学术工作的快速发展。这个问题也适用于任何具有非常大的文档语料库且不存在好的分类方案的领域。为了解决这一挑战,我们提出了一种无监督的方法,基于对语料库中共享概念网络或其“概念拓扑”的聚类,将层次分类方案拟合到语料库中。我们的方法可能适用于任何类型的内容,并且可以扩展到包含数百万个顶点的大型网络。我们已经演示了我们的方法在150万学术文本语料库中的应用,这些文本代表了网络上大多数开放获取(OA)学术出版物,并使用专家图书管理员注释验证了我们的结果。我们已经开放了我们的数据集供其他人研究。我们相信我们的分类方案最能代表开放获取学术出版的现状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical Categorization of Big Content Using Concept Topology
Abstract Methods that are both computationally feasible and practically effective are needed to make sense of big corpuses of content, or “big content.” For example, supervised categorization techniques for open-access academic publishing are ill-suited for automated categorization because they rely on an existing categorization scheme, but no supervised scheme can stay abreast of the rapidly evolving landscape of scholarly work. This problem also applies to any domain with very large document corpuses where no good categorization scheme exists. To address this challenge, we present an unsupervised method to fit a hierarchical categorization scheme to a corpus based on clustering the network of shared concepts in the corpus, or its “concept topology.” Our method potentially applies to any type of content, and it scales to large networks of millions of vertices. We have demonstrated the application of our method to a corpus of 1.5 million scholarly texts representing the majority of open access (OA) academic publications on the web, validating our results using expert librarian annotations. We have made our datasets openly accessible for research by others. We believe that our resulting categorization scheme best represents OA academic publishing as it exists today.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Library Metadata
Journal of Library Metadata Social Sciences-Library and Information Sciences
CiteScore
2.00
自引率
0.00%
发文量
13
期刊最新文献
Metadata Management in Data Lake Environments: A Survey A Minimal Metadata Schema and Its Tool to Improve the Searchableness of Research Data in Bioinformatics Changes in Digital Collections and Their Metadata: A Longitudinal Study of UIUC Digital Library Common Metadata Framework for Research Data Repository: Necessity to Support Open Science Entity Management Using RDA and Wikibase: A Case Study at the National Library of Greece
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1