{"title":"声波流体刺激对PC12分化的调节作用","authors":"Shan He, W. Pang, X. Duan, Yanyan Wang","doi":"10.1109/ULTSYM.2019.8926311","DOIUrl":null,"url":null,"abstract":"Regulating the differentiation and regeneration of nerve cells has been proved effective for treating neurological disorders diseases. Although there have been several studies related to neuromodulation, these studies have suffered from invasiveness or low spatial resolution. Herein, a hypersound acoustic stimulation on nerve cells was explored and the results demonstrated this novel method had powerful effect on targeted nerve cell regulation. A bulk acoustic wave resonator fabricated with MEMS process was used to generate hypersound. The acoustic fluid (AF) effect was produced with mechanical pressure when hypersound transmitted with attention in the solution. Results indicated that exposing PC12 cells to AF stimulation, small protrusions would appear within 10 minutes. And differentiation ratio of the AF stimulated cells was 16% higher than that of cells cultured with nerve growth factor (NGF). This original and effective method is compatible with conventional cell culture and had potential in single nerve cells regulation.","PeriodicalId":6759,"journal":{"name":"2019 IEEE International Ultrasonics Symposium (IUS)","volume":"47 1","pages":"273-275"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Regulating the differentiation of PC12 by acoustic fluid stimulation\",\"authors\":\"Shan He, W. Pang, X. Duan, Yanyan Wang\",\"doi\":\"10.1109/ULTSYM.2019.8926311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regulating the differentiation and regeneration of nerve cells has been proved effective for treating neurological disorders diseases. Although there have been several studies related to neuromodulation, these studies have suffered from invasiveness or low spatial resolution. Herein, a hypersound acoustic stimulation on nerve cells was explored and the results demonstrated this novel method had powerful effect on targeted nerve cell regulation. A bulk acoustic wave resonator fabricated with MEMS process was used to generate hypersound. The acoustic fluid (AF) effect was produced with mechanical pressure when hypersound transmitted with attention in the solution. Results indicated that exposing PC12 cells to AF stimulation, small protrusions would appear within 10 minutes. And differentiation ratio of the AF stimulated cells was 16% higher than that of cells cultured with nerve growth factor (NGF). This original and effective method is compatible with conventional cell culture and had potential in single nerve cells regulation.\",\"PeriodicalId\":6759,\"journal\":{\"name\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"volume\":\"47 1\",\"pages\":\"273-275\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Ultrasonics Symposium (IUS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2019.8926311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Ultrasonics Symposium (IUS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2019.8926311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Regulating the differentiation of PC12 by acoustic fluid stimulation
Regulating the differentiation and regeneration of nerve cells has been proved effective for treating neurological disorders diseases. Although there have been several studies related to neuromodulation, these studies have suffered from invasiveness or low spatial resolution. Herein, a hypersound acoustic stimulation on nerve cells was explored and the results demonstrated this novel method had powerful effect on targeted nerve cell regulation. A bulk acoustic wave resonator fabricated with MEMS process was used to generate hypersound. The acoustic fluid (AF) effect was produced with mechanical pressure when hypersound transmitted with attention in the solution. Results indicated that exposing PC12 cells to AF stimulation, small protrusions would appear within 10 minutes. And differentiation ratio of the AF stimulated cells was 16% higher than that of cells cultured with nerve growth factor (NGF). This original and effective method is compatible with conventional cell culture and had potential in single nerve cells regulation.