意大利司法部IT系统数据和文档统一语义表示的大数据管道和机器学习

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Grid and High Performance Computing Pub Date : 2022-01-01 DOI:10.4018/ijghpc.301579
B. D. Martino, Luigi Colucci Cante, Salvatore D'Angelo, A. Esposito, Mariangela Graziano, F. Marulli, Pietro Lupi, Alessandra Cataldi
{"title":"意大利司法部IT系统数据和文档统一语义表示的大数据管道和机器学习","authors":"B. D. Martino, Luigi Colucci Cante, Salvatore D'Angelo, A. Esposito, Mariangela Graziano, F. Marulli, Pietro Lupi, Alessandra Cataldi","doi":"10.4018/ijghpc.301579","DOIUrl":null,"url":null,"abstract":"In this paper a Big Data Pipeline is presented, taking in consideration both structured and unstructured data made available by the Italian Ministry of Justice, regarding their Telematic Civil Process. Indeed, the complexity and volume of the data provided by the Ministry requires the application of Big Data analysis techniques, in concert with Machine and Deep Learning frameworks, to be correctly analysed and to obtain meaningful information that could support the Ministry itself in better managing Civil Processes. The Pipeline has two main objectives: to provide a consistent workflow of activities to be applied to the incoming data, aiming at extracting useful information for the Ministry's decision making tasks; to homogenize the incoming data, so that they can be stored in a centralized and coherent Datalake to be used as a reference for further analysis and considerations.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"55 6 1","pages":"1-31"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Big Data Pipeline and Machine Learning for Uniform Semantic Representation of Data and Documents From IT Systems of the Italian Ministry of Justice\",\"authors\":\"B. D. Martino, Luigi Colucci Cante, Salvatore D'Angelo, A. Esposito, Mariangela Graziano, F. Marulli, Pietro Lupi, Alessandra Cataldi\",\"doi\":\"10.4018/ijghpc.301579\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a Big Data Pipeline is presented, taking in consideration both structured and unstructured data made available by the Italian Ministry of Justice, regarding their Telematic Civil Process. Indeed, the complexity and volume of the data provided by the Ministry requires the application of Big Data analysis techniques, in concert with Machine and Deep Learning frameworks, to be correctly analysed and to obtain meaningful information that could support the Ministry itself in better managing Civil Processes. The Pipeline has two main objectives: to provide a consistent workflow of activities to be applied to the incoming data, aiming at extracting useful information for the Ministry's decision making tasks; to homogenize the incoming data, so that they can be stored in a centralized and coherent Datalake to be used as a reference for further analysis and considerations.\",\"PeriodicalId\":43565,\"journal\":{\"name\":\"International Journal of Grid and High Performance Computing\",\"volume\":\"55 6 1\",\"pages\":\"1-31\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Grid and High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijghpc.301579\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.301579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一个大数据管道,考虑到意大利司法部提供的结构化和非结构化数据,关于他们的远程信息处理民事程序。事实上,该部提供的数据的复杂性和数量需要应用大数据分析技术,与机器和深度学习框架相结合,正确分析并获得有意义的信息,这些信息可以支持该部更好地管理民事程序。管道有两个主要目标:提供适用于传入数据的一致的活动工作流,旨在为该部的决策任务提取有用的信息;将传入的数据同质化,以便将其存储在集中一致的Datalake中,作为进一步分析和考虑的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Big Data Pipeline and Machine Learning for Uniform Semantic Representation of Data and Documents From IT Systems of the Italian Ministry of Justice
In this paper a Big Data Pipeline is presented, taking in consideration both structured and unstructured data made available by the Italian Ministry of Justice, regarding their Telematic Civil Process. Indeed, the complexity and volume of the data provided by the Ministry requires the application of Big Data analysis techniques, in concert with Machine and Deep Learning frameworks, to be correctly analysed and to obtain meaningful information that could support the Ministry itself in better managing Civil Processes. The Pipeline has two main objectives: to provide a consistent workflow of activities to be applied to the incoming data, aiming at extracting useful information for the Ministry's decision making tasks; to homogenize the incoming data, so that they can be stored in a centralized and coherent Datalake to be used as a reference for further analysis and considerations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
期刊最新文献
A Potent View on the Effects of E-Learning Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection A Security Method for Cloud Storage Using Data Classification An Energy-Efficient Multi-Channel Design for Distributed Wireless Sensor Networks On Allocation Algorithms for Manycore Systems With Network on Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1