spfilteR:一个用于(广义)线性模型中特征向量的半参数空间滤波的R包

R J. Pub Date : 2021-01-01 DOI:10.32614/rj-2021-085
Sebastian Juhl
{"title":"spfilteR:一个用于(广义)线性模型中特征向量的半参数空间滤波的R包","authors":"Sebastian Juhl","doi":"10.32614/rj-2021-085","DOIUrl":null,"url":null,"abstract":"Eigenvector-based spatial filtering constitutes a highly flexible semiparametric approach to account for spatial autocorrelation in a regression framework. It combines judiciously selected eigenvectors from a transformed connectivity matrix to construct a synthetic spatial filter and remove spatial patterns from model residuals. This article introduces the spfilteR package that provides several useful and flexible tools to estimate spatially filtered linear and generalized linear models in R. While the package features functions to identify relevant eigenvectors based on different selection criteria in an unsupervised fashion, it also helps users to perform supervised spatial filtering and to select eigenvectors based on alternative user-defined criteria. After a brief discussion of the eigenvectorbased spatial filtering approach, this article presents the main functions of the package and illustrates their usage. A comparison to alternative implementations in other R packages highlights the added value of the spfilteR package.","PeriodicalId":20974,"journal":{"name":"R J.","volume":"95 1","pages":"380"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"spfilteR: An R package for Semiparametric Spatial Filtering with Eigenvectors in (Generalized) Linear Models\",\"authors\":\"Sebastian Juhl\",\"doi\":\"10.32614/rj-2021-085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Eigenvector-based spatial filtering constitutes a highly flexible semiparametric approach to account for spatial autocorrelation in a regression framework. It combines judiciously selected eigenvectors from a transformed connectivity matrix to construct a synthetic spatial filter and remove spatial patterns from model residuals. This article introduces the spfilteR package that provides several useful and flexible tools to estimate spatially filtered linear and generalized linear models in R. While the package features functions to identify relevant eigenvectors based on different selection criteria in an unsupervised fashion, it also helps users to perform supervised spatial filtering and to select eigenvectors based on alternative user-defined criteria. After a brief discussion of the eigenvectorbased spatial filtering approach, this article presents the main functions of the package and illustrates their usage. A comparison to alternative implementations in other R packages highlights the added value of the spfilteR package.\",\"PeriodicalId\":20974,\"journal\":{\"name\":\"R J.\",\"volume\":\"95 1\",\"pages\":\"380\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"R J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32614/rj-2021-085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"R J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32614/rj-2021-085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于特征向量的空间滤波构成了一种高度灵活的半参数方法来解释回归框架中的空间自相关。它结合从转换的连通性矩阵中明智地选择特征向量来构建一个合成空间滤波器,并从模型残差中去除空间模式。本文介绍了spfilteR包,它提供了几个有用和灵活的工具来估计r中的空间过滤线性和广义线性模型。虽然该包的功能以无监督的方式基于不同的选择标准识别相关的特征向量,但它还帮助用户执行监督空间过滤并根据其他用户定义的标准选择特征向量。在简要讨论了基于特征向量的空间滤波方法之后,本文介绍了该包的主要功能并说明了它们的使用方法。与其他R包中的替代实现的比较突出了spfilteR包的附加价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
spfilteR: An R package for Semiparametric Spatial Filtering with Eigenvectors in (Generalized) Linear Models
Eigenvector-based spatial filtering constitutes a highly flexible semiparametric approach to account for spatial autocorrelation in a regression framework. It combines judiciously selected eigenvectors from a transformed connectivity matrix to construct a synthetic spatial filter and remove spatial patterns from model residuals. This article introduces the spfilteR package that provides several useful and flexible tools to estimate spatially filtered linear and generalized linear models in R. While the package features functions to identify relevant eigenvectors based on different selection criteria in an unsupervised fashion, it also helps users to perform supervised spatial filtering and to select eigenvectors based on alternative user-defined criteria. After a brief discussion of the eigenvectorbased spatial filtering approach, this article presents the main functions of the package and illustrates their usage. A comparison to alternative implementations in other R packages highlights the added value of the spfilteR package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized Mosaic Plots in the \pkg{ggplot2} Framework populR: a Package for Population Downscaling in R Making Provenance Work for You SurvMetrics: An R package for Predictive Evaluation Metrics in Survival Analysis HostSwitch: An R Package to Simulate the Extent of Host-Switching by a Consumer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1