{"title":"功能神经成像的新途径:超高场磁共振成像和 OPM-MEG。","authors":"Lang Qin, Jia-Hong Gao","doi":"10.1093/psyrad/kkab014","DOIUrl":null,"url":null,"abstract":"<p><p>Functional brain imaging technology has developed rapidly in recent years. On the one hand, high-field 7-Tesla magnetic resonance imaging (MRI) has excelled the limited spatial resolution of 3-Tesla MRI, allowing us to enter a new world of mesoscopic imaging from the macroscopic imaging of human brain functions. On the other hand, novel optical pumping magnetometer-magnetoencephalography (OPM-MEG) has broken down the technical barriers of traditional superconducting MEG, which brings imaging of neuronal electromagnetic signals from cortical imaging to whole-brain imaging. This article aims to present a brief introduction regarding the development of conventional MRI and MEG technology, and, more importantly, to delineate that high-field MRI and OPM-MEG complement each other and together will lead us into a new era of functional brain imaging.</p>","PeriodicalId":93496,"journal":{"name":"Psychoradiology","volume":"1 1","pages":"165-171"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025555/pdf/","citationCount":"0","resultStr":"{\"title\":\"New avenues for functional neuroimaging: ultra-high field MRI and OPM-MEG.\",\"authors\":\"Lang Qin, Jia-Hong Gao\",\"doi\":\"10.1093/psyrad/kkab014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Functional brain imaging technology has developed rapidly in recent years. On the one hand, high-field 7-Tesla magnetic resonance imaging (MRI) has excelled the limited spatial resolution of 3-Tesla MRI, allowing us to enter a new world of mesoscopic imaging from the macroscopic imaging of human brain functions. On the other hand, novel optical pumping magnetometer-magnetoencephalography (OPM-MEG) has broken down the technical barriers of traditional superconducting MEG, which brings imaging of neuronal electromagnetic signals from cortical imaging to whole-brain imaging. This article aims to present a brief introduction regarding the development of conventional MRI and MEG technology, and, more importantly, to delineate that high-field MRI and OPM-MEG complement each other and together will lead us into a new era of functional brain imaging.</p>\",\"PeriodicalId\":93496,\"journal\":{\"name\":\"Psychoradiology\",\"volume\":\"1 1\",\"pages\":\"165-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11025555/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychoradiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/psyrad/kkab014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychoradiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/psyrad/kkab014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
近年来,脑功能成像技术发展迅速。一方面,高场7特斯拉磁共振成像(MRI)超越了3特斯拉磁共振成像有限的空间分辨率,让我们从人脑功能的宏观成像进入了中观成像的新世界。另一方面,新型光学抽运磁强计-脑磁图(OPM-MEG)打破了传统超导脑磁图的技术壁垒,将神经元电磁信号成像从皮层成像带入全脑成像。本文旨在简要介绍传统 MRI 和 MEG 技术的发展,更重要的是阐明高场 MRI 和 OPM-MEG 相辅相成,将共同引领我们进入脑功能成像的新时代。
New avenues for functional neuroimaging: ultra-high field MRI and OPM-MEG.
Functional brain imaging technology has developed rapidly in recent years. On the one hand, high-field 7-Tesla magnetic resonance imaging (MRI) has excelled the limited spatial resolution of 3-Tesla MRI, allowing us to enter a new world of mesoscopic imaging from the macroscopic imaging of human brain functions. On the other hand, novel optical pumping magnetometer-magnetoencephalography (OPM-MEG) has broken down the technical barriers of traditional superconducting MEG, which brings imaging of neuronal electromagnetic signals from cortical imaging to whole-brain imaging. This article aims to present a brief introduction regarding the development of conventional MRI and MEG technology, and, more importantly, to delineate that high-field MRI and OPM-MEG complement each other and together will lead us into a new era of functional brain imaging.