{"title":"海报:应用无监督的基于上下文的分析来检测未经授权的数据泄露","authors":"Ma'ayan Gafny, A. Shabtai, L. Rokach, Y. Elovici","doi":"10.1145/2046707.2093488","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new unsupervised approach for identifying suspicious access to sensitive relational data. In the proposed method, a tree-like model encapsulates the characteristics of the result-set (i.e., data) that the user normally access within each possible context. During the detection phase, result-sets are examined against the induced model and a similarity score is derived.","PeriodicalId":72687,"journal":{"name":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","volume":"69 1","pages":"765-768"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Poster: applying unsupervised context-based analysis for detecting unauthorized data disclosure\",\"authors\":\"Ma'ayan Gafny, A. Shabtai, L. Rokach, Y. Elovici\",\"doi\":\"10.1145/2046707.2093488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new unsupervised approach for identifying suspicious access to sensitive relational data. In the proposed method, a tree-like model encapsulates the characteristics of the result-set (i.e., data) that the user normally access within each possible context. During the detection phase, result-sets are examined against the induced model and a similarity score is derived.\",\"PeriodicalId\":72687,\"journal\":{\"name\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"volume\":\"69 1\",\"pages\":\"765-768\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2046707.2093488\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer and Communications Security : proceedings of the ... conference on computer and communications security. ACM Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2046707.2093488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poster: applying unsupervised context-based analysis for detecting unauthorized data disclosure
In this paper, we propose a new unsupervised approach for identifying suspicious access to sensitive relational data. In the proposed method, a tree-like model encapsulates the characteristics of the result-set (i.e., data) that the user normally access within each possible context. During the detection phase, result-sets are examined against the induced model and a similarity score is derived.