Francesca Letizia, Silvia Sanvido, Stijn Lemmens, Klaus Merz, Richard Southworth, Bruno Sousa
{"title":"欧空局目前对HEO任务生命周期结束战略的方法","authors":"Francesca Letizia, Silvia Sanvido, Stijn Lemmens, Klaus Merz, Richard Southworth, Bruno Sousa","doi":"10.1016/j.jsse.2023.08.004","DOIUrl":null,"url":null,"abstract":"<div><p><span>ESA's Space Debris Office (SDO) provides support and recommendations for the on-ground risk assessment at the satellite's end of life (EOL) to internal ESA missions as well as external partners. The support covers missions in </span>Low Earth Orbit<span><span> (LEO) and highly eccentric orbits (HEO), but also special cases such as a re-entry of interplanetary missions. While for LEO and </span>Geostationary orbits (GEO), guidelines for disposal in terms of natural decays and graveyard orbit are available, HEO orbits require tailored strategies to guarantee limited interference with the protected regions and a safe re-entry. The present works aims to provide an overview and reflection on the current approaches for the end-of-life strategies for mission in HEO orbits, accounting for the main uncertainties.</span></p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ESA's current approaches to end-of-life strategies for HEO missions\",\"authors\":\"Francesca Letizia, Silvia Sanvido, Stijn Lemmens, Klaus Merz, Richard Southworth, Bruno Sousa\",\"doi\":\"10.1016/j.jsse.2023.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>ESA's Space Debris Office (SDO) provides support and recommendations for the on-ground risk assessment at the satellite's end of life (EOL) to internal ESA missions as well as external partners. The support covers missions in </span>Low Earth Orbit<span><span> (LEO) and highly eccentric orbits (HEO), but also special cases such as a re-entry of interplanetary missions. While for LEO and </span>Geostationary orbits (GEO), guidelines for disposal in terms of natural decays and graveyard orbit are available, HEO orbits require tailored strategies to guarantee limited interference with the protected regions and a safe re-entry. The present works aims to provide an overview and reflection on the current approaches for the end-of-life strategies for mission in HEO orbits, accounting for the main uncertainties.</span></p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468896723000824\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468896723000824","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
ESA's current approaches to end-of-life strategies for HEO missions
ESA's Space Debris Office (SDO) provides support and recommendations for the on-ground risk assessment at the satellite's end of life (EOL) to internal ESA missions as well as external partners. The support covers missions in Low Earth Orbit (LEO) and highly eccentric orbits (HEO), but also special cases such as a re-entry of interplanetary missions. While for LEO and Geostationary orbits (GEO), guidelines for disposal in terms of natural decays and graveyard orbit are available, HEO orbits require tailored strategies to guarantee limited interference with the protected regions and a safe re-entry. The present works aims to provide an overview and reflection on the current approaches for the end-of-life strategies for mission in HEO orbits, accounting for the main uncertainties.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.