丁-3-烯醛O(3P)大气氧化反应多通道机理的理论动力学研究

Q3 Biochemistry, Genetics and Molecular Biology Turkish Computational and Theoretical Chemistry Pub Date : 2023-07-12 DOI:10.33435/tcandtc.1277724
Boulanouar Messaoudi, M. Cheriet, Rayanne Djemil, Khatmi DJAMEL EDDİNE
{"title":"丁-3-烯醛O(3P)大气氧化反应多通道机理的理论动力学研究","authors":"Boulanouar Messaoudi, M. Cheriet, Rayanne Djemil, Khatmi DJAMEL EDDİNE","doi":"10.33435/tcandtc.1277724","DOIUrl":null,"url":null,"abstract":"Several levels of theory such as Møller-Plesset MP2, G3, and CBS-QB3, have been used in order to investigate the complex and multichannel potential energy surface of the reaction of but-3-enal with the triplet oxygen atom. The results show that the O-addition channel is dominant. The different possible pathways of oxygen atom attack are thoroughly studied to better understand and explain the reaction mechanism. Regarding the oxidation of but-3-enal by triplet oxygen O(3P), it is shown that the major thermodynamic product is H3CC(O)CH2C(O)H (P3) being the most stable for the whole reaction. However, the most favored product kinetically is H2CC(OH)CH2C(O)H (P2). For the H-abstraction second possible pathway, the most favored product both kinetically and thermodynamically is found to be P8. The activation energy and calculated rate constants are consistent with the proposed addition mechanism.","PeriodicalId":36025,"journal":{"name":"Turkish Computational and Theoretical Chemistry","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical kinetic investigation of the multichannel mechanism of O(3P) atmospheric oxidation reaction of but-3-enal\",\"authors\":\"Boulanouar Messaoudi, M. Cheriet, Rayanne Djemil, Khatmi DJAMEL EDDİNE\",\"doi\":\"10.33435/tcandtc.1277724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several levels of theory such as Møller-Plesset MP2, G3, and CBS-QB3, have been used in order to investigate the complex and multichannel potential energy surface of the reaction of but-3-enal with the triplet oxygen atom. The results show that the O-addition channel is dominant. The different possible pathways of oxygen atom attack are thoroughly studied to better understand and explain the reaction mechanism. Regarding the oxidation of but-3-enal by triplet oxygen O(3P), it is shown that the major thermodynamic product is H3CC(O)CH2C(O)H (P3) being the most stable for the whole reaction. However, the most favored product kinetically is H2CC(OH)CH2C(O)H (P2). For the H-abstraction second possible pathway, the most favored product both kinetically and thermodynamically is found to be P8. The activation energy and calculated rate constants are consistent with the proposed addition mechanism.\",\"PeriodicalId\":36025,\"journal\":{\"name\":\"Turkish Computational and Theoretical Chemistry\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Computational and Theoretical Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33435/tcandtc.1277724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Computational and Theoretical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33435/tcandtc.1277724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

利用Møller-Plesset MP2、G3和CBS-QB3等理论,研究了丁-3-烯醛与三态氧原子反应的复杂多通道势能面。结果表明,o +通道占主导地位。对氧原子攻击的不同可能途径进行了深入的研究,以更好地理解和解释反应机理。对于三态氧O(3P)氧化-3-烯醛,热力学产物主要为H3CC(O)CH2C(O)H (P3),是整个反应最稳定的产物。然而,动力学上最有利的产物是H2CC(OH)CH2C(O)H (P2)。对于氢提取的第二种可能途径,在动力学和热力学上都发现最有利的产物是P8。计算得到的活化能和速率常数与提出的加成机理一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Theoretical kinetic investigation of the multichannel mechanism of O(3P) atmospheric oxidation reaction of but-3-enal
Several levels of theory such as Møller-Plesset MP2, G3, and CBS-QB3, have been used in order to investigate the complex and multichannel potential energy surface of the reaction of but-3-enal with the triplet oxygen atom. The results show that the O-addition channel is dominant. The different possible pathways of oxygen atom attack are thoroughly studied to better understand and explain the reaction mechanism. Regarding the oxidation of but-3-enal by triplet oxygen O(3P), it is shown that the major thermodynamic product is H3CC(O)CH2C(O)H (P3) being the most stable for the whole reaction. However, the most favored product kinetically is H2CC(OH)CH2C(O)H (P2). For the H-abstraction second possible pathway, the most favored product both kinetically and thermodynamically is found to be P8. The activation energy and calculated rate constants are consistent with the proposed addition mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Turkish Computational and Theoretical Chemistry
Turkish Computational and Theoretical Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (miscellaneous)
CiteScore
2.40
自引率
0.00%
发文量
4
期刊最新文献
In Silico Evaluation of Molecular Docking, Molecular Dynamic, and ADME Study of New Nabumetone Schiff Base Derivatives (1,3,4-oxadiazole or 1,3,4-thiadiazole ring) Promising Antiproliferation Action Against Lung Cancer In-silico molecular docking, ADME study, and molecular dynamic simulation of new azetidin-2-one derivatives with antiproliferative activity A Computational Approach of Anti-diabetic Potential Evaluation of Flower and Seed of Nyctanthes arbor tristis Linn The discovery of new potent VEGFR2 inhibitors for potential anti-angiogenesis agent through a combination of structure-based virtual screening, molecular dynamics simulation and ADME-Tox prediction Investigation of Anticancer Properties of 2-benzylidene-1-indanone and Its Derivatives by DFT and Molecular Docking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1