基于数据增强的零均值卷积网络的声级不变歌声分离

Kin Wah Edward Lin, Masataka Goto
{"title":"基于数据增强的零均值卷积网络的声级不变歌声分离","authors":"Kin Wah Edward Lin, Masataka Goto","doi":"10.1109/ICASSP.2019.8682958","DOIUrl":null,"url":null,"abstract":"We address an issue of separating singing voices from polyphonic music signals regardless of sound level variance of the mixture input. Using a standard separation quality assessment tool BSS Eval 4.0, we found that the separation quality of a singing voice separation (SVS) system based on a dilatable Convolutional Neural Network (CNN) decreases under different sound levels. Even if this SVS system is comparable to state-of-the-art SVS systems, it is vulnerable to the issue of sound level variance. We therefore investigate four methods of making the CNN-based SVS system invariant to different sound levels — two types of data augmentation, frame normalization, and zero-mean convolution. By testing all 15 combinations of the four methods, we found that all combinations can improve the sound level invariance and analyzed the best combinations. To the best of our knowledge, this is the first SVS work systematically investigating sound level variance.","PeriodicalId":13203,"journal":{"name":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"251-255"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Zero-mean Convolutional Network with Data Augmentation for Sound Level Invariant Singing Voice Separation\",\"authors\":\"Kin Wah Edward Lin, Masataka Goto\",\"doi\":\"10.1109/ICASSP.2019.8682958\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address an issue of separating singing voices from polyphonic music signals regardless of sound level variance of the mixture input. Using a standard separation quality assessment tool BSS Eval 4.0, we found that the separation quality of a singing voice separation (SVS) system based on a dilatable Convolutional Neural Network (CNN) decreases under different sound levels. Even if this SVS system is comparable to state-of-the-art SVS systems, it is vulnerable to the issue of sound level variance. We therefore investigate four methods of making the CNN-based SVS system invariant to different sound levels — two types of data augmentation, frame normalization, and zero-mean convolution. By testing all 15 combinations of the four methods, we found that all combinations can improve the sound level invariance and analyzed the best combinations. To the best of our knowledge, this is the first SVS work systematically investigating sound level variance.\",\"PeriodicalId\":13203,\"journal\":{\"name\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"251-255\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2019.8682958\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2019.8682958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们解决了一个从复调音乐信号中分离歌唱声音的问题,而不管混合输入的声级差异。使用标准的分离质量评估工具BSS Eval 4.0,我们发现基于可扩展卷积神经网络(CNN)的歌唱声音分离(SVS)系统在不同声级下的分离质量下降。即使这种SVS系统与最先进的SVS系统相媲美,它也容易受到声级差异问题的影响。因此,我们研究了使基于cnn的SVS系统对不同声级不变性的四种方法——两种类型的数据增强、帧归一化和零均值卷积。通过对四种方法的15种组合进行测试,发现所有组合都能提高声级不变性,并分析了最佳组合。据我们所知,这是SVS第一次系统地调查声级差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zero-mean Convolutional Network with Data Augmentation for Sound Level Invariant Singing Voice Separation
We address an issue of separating singing voices from polyphonic music signals regardless of sound level variance of the mixture input. Using a standard separation quality assessment tool BSS Eval 4.0, we found that the separation quality of a singing voice separation (SVS) system based on a dilatable Convolutional Neural Network (CNN) decreases under different sound levels. Even if this SVS system is comparable to state-of-the-art SVS systems, it is vulnerable to the issue of sound level variance. We therefore investigate four methods of making the CNN-based SVS system invariant to different sound levels — two types of data augmentation, frame normalization, and zero-mean convolution. By testing all 15 combinations of the four methods, we found that all combinations can improve the sound level invariance and analyzed the best combinations. To the best of our knowledge, this is the first SVS work systematically investigating sound level variance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Universal Acoustic Modeling Using Neural Mixture Models Speech Landmark Bigrams for Depression Detection from Naturalistic Smartphone Speech Robust M-estimation Based Matrix Completion When Can a System of Subnetworks Be Registered Uniquely? Learning Search Path for Region-level Image Matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1