Linda Peschke, Anna Kiani, Ute Massler, Wolfgang Müller
{"title":"桌面VR中的读者剧场:九年级学生的试点研究","authors":"Linda Peschke, Anna Kiani, Ute Massler, Wolfgang Müller","doi":"10.3390/virtualworlds2030016","DOIUrl":null,"url":null,"abstract":"Appropriate techniques for promoting reading fluency are difficult to implement in the classroom. There is little time to provide students with individualized feedback on reading aloud or to motivate them to do so. In this context, Virtual Reality (VR) can be beneficial for learning because it allows for individualized feedback and for increasing learner engagement. Studies that analyze established methods of language learning in VR at school are thus far lacking. Therefore, this pilot study is one of the first to analyze student acceptance of reading fluency training in desktop VR at a secondary school. The interview guide was developed in accordance with the Technology Acceptance Model. The desktop VR environment is web-based and provides individual and collaborative opportunities for training reading fluency, giving, and receiving feedback, and deepening content understanding of reading texts. To analyze the acceptance of the desktop VR environment, five guided interviews were conducted. The results reveal that despite various technical challenges within the VR environment, students not only accepted but also appreciated the reading fluency training in VR. The integration of established concepts of reading fluency training in foreign language classrooms has great potential as an additional value in addressing the challenges of face-to-face instruction.","PeriodicalId":50645,"journal":{"name":"Computer Animation and Virtual Worlds","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Readers Theater in Desktop VR: A Pilot Study with Grade Nine Students\",\"authors\":\"Linda Peschke, Anna Kiani, Ute Massler, Wolfgang Müller\",\"doi\":\"10.3390/virtualworlds2030016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Appropriate techniques for promoting reading fluency are difficult to implement in the classroom. There is little time to provide students with individualized feedback on reading aloud or to motivate them to do so. In this context, Virtual Reality (VR) can be beneficial for learning because it allows for individualized feedback and for increasing learner engagement. Studies that analyze established methods of language learning in VR at school are thus far lacking. Therefore, this pilot study is one of the first to analyze student acceptance of reading fluency training in desktop VR at a secondary school. The interview guide was developed in accordance with the Technology Acceptance Model. The desktop VR environment is web-based and provides individual and collaborative opportunities for training reading fluency, giving, and receiving feedback, and deepening content understanding of reading texts. To analyze the acceptance of the desktop VR environment, five guided interviews were conducted. The results reveal that despite various technical challenges within the VR environment, students not only accepted but also appreciated the reading fluency training in VR. The integration of established concepts of reading fluency training in foreign language classrooms has great potential as an additional value in addressing the challenges of face-to-face instruction.\",\"PeriodicalId\":50645,\"journal\":{\"name\":\"Computer Animation and Virtual Worlds\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Animation and Virtual Worlds\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3390/virtualworlds2030016\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Animation and Virtual Worlds","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3390/virtualworlds2030016","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Readers Theater in Desktop VR: A Pilot Study with Grade Nine Students
Appropriate techniques for promoting reading fluency are difficult to implement in the classroom. There is little time to provide students with individualized feedback on reading aloud or to motivate them to do so. In this context, Virtual Reality (VR) can be beneficial for learning because it allows for individualized feedback and for increasing learner engagement. Studies that analyze established methods of language learning in VR at school are thus far lacking. Therefore, this pilot study is one of the first to analyze student acceptance of reading fluency training in desktop VR at a secondary school. The interview guide was developed in accordance with the Technology Acceptance Model. The desktop VR environment is web-based and provides individual and collaborative opportunities for training reading fluency, giving, and receiving feedback, and deepening content understanding of reading texts. To analyze the acceptance of the desktop VR environment, five guided interviews were conducted. The results reveal that despite various technical challenges within the VR environment, students not only accepted but also appreciated the reading fluency training in VR. The integration of established concepts of reading fluency training in foreign language classrooms has great potential as an additional value in addressing the challenges of face-to-face instruction.
期刊介绍:
With the advent of very powerful PCs and high-end graphics cards, there has been an incredible development in Virtual Worlds, real-time computer animation and simulation, games. But at the same time, new and cheaper Virtual Reality devices have appeared allowing an interaction with these real-time Virtual Worlds and even with real worlds through Augmented Reality. Three-dimensional characters, especially Virtual Humans are now of an exceptional quality, which allows to use them in the movie industry. But this is only a beginning, as with the development of Artificial Intelligence and Agent technology, these characters will become more and more autonomous and even intelligent. They will inhabit the Virtual Worlds in a Virtual Life together with animals and plants.