Minghao Wang, Ming Cong, Dong Liu, Yuqing Du, Xiaojing Tian, Bing Li
{"title":"地下多层大尺度环境下紧密耦合IMU-Laser-RTK测程算法","authors":"Minghao Wang, Ming Cong, Dong Liu, Yuqing Du, Xiaojing Tian, Bing Li","doi":"10.1108/ir-11-2022-0281","DOIUrl":null,"url":null,"abstract":"\nPurpose\nThe purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic (RTK) data in underground spatial features and gravity fluctuations environment. This method improves the mapping accuracy in two types of underground space: multi-layer space and large-scale scenarios.\n\n\nDesign/methodology/approach\nAn IMU–Laser–RTK fusion mapping algorithm based on Iterative Kalman Filter was proposed, and the observation equation and Jacobian matrix were derived. Aiming at the problem of inaccurate gravity estimation, the optimization of gravity is transformed into the optimization of SO(3), which avoids the problem of gravity over-parameterization.\n\n\nFindings\nCompared with the optimization method, the computational cost is reduced. Without relying on the wheel speed odometer, the robot synchronization localization and 3D environment modeling for multi-layer space are realized. The performance of the proposed algorithm is tested and compared in two types of underground space, and the robustness and accuracy in multi-layer space and large-scale scenarios are verified. The results show that the root mean square error of the proposed algorithm is 0.061 m, which achieves higher accuracy than other algorithms.\n\n\nOriginality/value\nBased on the problem of large loop and low feature scale, this algorithm can better complete the map loop and self-positioning, and its root mean square error is more than double compared with other methods. The method proposed in this paper can better complete the autonomous positioning of the robot in the underground space with hierarchical feature degradation, and at the same time, an accurate 3D map can be constructed for subsequent research.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":"13 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tightly coupled IMU-Laser-RTK odometry algorithm for underground multi-layer and large-scale environment\",\"authors\":\"Minghao Wang, Ming Cong, Dong Liu, Yuqing Du, Xiaojing Tian, Bing Li\",\"doi\":\"10.1108/ir-11-2022-0281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nPurpose\\nThe purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic (RTK) data in underground spatial features and gravity fluctuations environment. This method improves the mapping accuracy in two types of underground space: multi-layer space and large-scale scenarios.\\n\\n\\nDesign/methodology/approach\\nAn IMU–Laser–RTK fusion mapping algorithm based on Iterative Kalman Filter was proposed, and the observation equation and Jacobian matrix were derived. Aiming at the problem of inaccurate gravity estimation, the optimization of gravity is transformed into the optimization of SO(3), which avoids the problem of gravity over-parameterization.\\n\\n\\nFindings\\nCompared with the optimization method, the computational cost is reduced. Without relying on the wheel speed odometer, the robot synchronization localization and 3D environment modeling for multi-layer space are realized. The performance of the proposed algorithm is tested and compared in two types of underground space, and the robustness and accuracy in multi-layer space and large-scale scenarios are verified. The results show that the root mean square error of the proposed algorithm is 0.061 m, which achieves higher accuracy than other algorithms.\\n\\n\\nOriginality/value\\nBased on the problem of large loop and low feature scale, this algorithm can better complete the map loop and self-positioning, and its root mean square error is more than double compared with other methods. The method proposed in this paper can better complete the autonomous positioning of the robot in the underground space with hierarchical feature degradation, and at the same time, an accurate 3D map can be constructed for subsequent research.\\n\",\"PeriodicalId\":54987,\"journal\":{\"name\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Robot-The International Journal of Robotics Research and Application\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/ir-11-2022-0281\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-11-2022-0281","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Tightly coupled IMU-Laser-RTK odometry algorithm for underground multi-layer and large-scale environment
Purpose
The purpose of this study is to designed a robot odometry based on three dimensional (3D) laser point cloud data, inertial measurement unit (IMU) data and real-time kinematic (RTK) data in underground spatial features and gravity fluctuations environment. This method improves the mapping accuracy in two types of underground space: multi-layer space and large-scale scenarios.
Design/methodology/approach
An IMU–Laser–RTK fusion mapping algorithm based on Iterative Kalman Filter was proposed, and the observation equation and Jacobian matrix were derived. Aiming at the problem of inaccurate gravity estimation, the optimization of gravity is transformed into the optimization of SO(3), which avoids the problem of gravity over-parameterization.
Findings
Compared with the optimization method, the computational cost is reduced. Without relying on the wheel speed odometer, the robot synchronization localization and 3D environment modeling for multi-layer space are realized. The performance of the proposed algorithm is tested and compared in two types of underground space, and the robustness and accuracy in multi-layer space and large-scale scenarios are verified. The results show that the root mean square error of the proposed algorithm is 0.061 m, which achieves higher accuracy than other algorithms.
Originality/value
Based on the problem of large loop and low feature scale, this algorithm can better complete the map loop and self-positioning, and its root mean square error is more than double compared with other methods. The method proposed in this paper can better complete the autonomous positioning of the robot in the underground space with hierarchical feature degradation, and at the same time, an accurate 3D map can be constructed for subsequent research.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.