Jessica N Wilson, Kristina A Kigerl, Michael D Sunshine, Chase E Taylor, Sydney L Speed, Breanna C Rose, Chris M Calulot, Brittany E Dong, Tara R Hawkinson, Harrison A Clarke, Adam D Bachstetter, Christopher M Waters, Ramon C Sun, Phillip G Popovich, Warren J Alilain
{"title":"针对微生物组改善脊髓损伤后的肠道健康和呼吸功能。","authors":"Jessica N Wilson, Kristina A Kigerl, Michael D Sunshine, Chase E Taylor, Sydney L Speed, Breanna C Rose, Chris M Calulot, Brittany E Dong, Tara R Hawkinson, Harrison A Clarke, Adam D Bachstetter, Christopher M Waters, Ramon C Sun, Phillip G Popovich, Warren J Alilain","doi":"10.1101/2023.06.23.546264","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal cord injury (SCI) is a devastating condition characterized by impaired motor and sensory function, as well as internal organ pathology and dysfunction. This internal organ dysfunction, particularly gastrointestinal (GI) complications, and neurogenic bowel, can reduce the quality of life of individuals with an SCI and potentially hinder their recovery. The gut microbiome impacts various central nervous system functions and has been linked to a number of health and disease states. An imbalance of the gut microbiome, i.e., gut dysbiosis, contributes to neurological disease and may influence recovery and repair processes after SCI. Here we examine the impact of high cervical SCI on the gut microbiome and find that transient gut dysbiosis with persistent gut pathology develops after SCI. Importantly, probiotic treatment improves gut health and respiratory motor function measured through whole-body plethysmography. Concurrent with these improvements was a systemic decrease in the cytokine tumor necrosis factor-alpha and an increase in neurite sprouting and regenerative potential of neurons. Collectively, these data reveal the gut microbiome as an important therapeutic target to improve visceral organ health and respiratory motor recovery after SCI.</p><p><strong>Research highlights: </strong>Cervical spinal cord injury (SCI) causes transient gut dysbiosis and persistent gastrointestinal (GI) pathology.Treatment with probiotics after SCI leads to a healthier GI tract and improved respiratory motor recovery.Probiotic treatment decreases systemic tumor necrosis factor-alpha and increases the potential for sprouting and regeneration of neurons after SCI.The gut microbiome is a valid target to improve motor function and secondary visceral health after SCI.</p>","PeriodicalId":12612,"journal":{"name":"Geological Magazine","volume":"7 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769193/pdf/","citationCount":"0","resultStr":"{\"title\":\"Targeting the Microbiome to Improve Gut Health and Breathing Function After Spinal Cord Injury.\",\"authors\":\"Jessica N Wilson, Kristina A Kigerl, Michael D Sunshine, Chase E Taylor, Sydney L Speed, Breanna C Rose, Chris M Calulot, Brittany E Dong, Tara R Hawkinson, Harrison A Clarke, Adam D Bachstetter, Christopher M Waters, Ramon C Sun, Phillip G Popovich, Warren J Alilain\",\"doi\":\"10.1101/2023.06.23.546264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinal cord injury (SCI) is a devastating condition characterized by impaired motor and sensory function, as well as internal organ pathology and dysfunction. This internal organ dysfunction, particularly gastrointestinal (GI) complications, and neurogenic bowel, can reduce the quality of life of individuals with an SCI and potentially hinder their recovery. The gut microbiome impacts various central nervous system functions and has been linked to a number of health and disease states. An imbalance of the gut microbiome, i.e., gut dysbiosis, contributes to neurological disease and may influence recovery and repair processes after SCI. Here we examine the impact of high cervical SCI on the gut microbiome and find that transient gut dysbiosis with persistent gut pathology develops after SCI. Importantly, probiotic treatment improves gut health and respiratory motor function measured through whole-body plethysmography. Concurrent with these improvements was a systemic decrease in the cytokine tumor necrosis factor-alpha and an increase in neurite sprouting and regenerative potential of neurons. Collectively, these data reveal the gut microbiome as an important therapeutic target to improve visceral organ health and respiratory motor recovery after SCI.</p><p><strong>Research highlights: </strong>Cervical spinal cord injury (SCI) causes transient gut dysbiosis and persistent gastrointestinal (GI) pathology.Treatment with probiotics after SCI leads to a healthier GI tract and improved respiratory motor recovery.Probiotic treatment decreases systemic tumor necrosis factor-alpha and increases the potential for sprouting and regeneration of neurons after SCI.The gut microbiome is a valid target to improve motor function and secondary visceral health after SCI.</p>\",\"PeriodicalId\":12612,\"journal\":{\"name\":\"Geological Magazine\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10769193/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2023.06.23.546264\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.06.23.546264","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeting the Microbiome to Improve Gut Health and Breathing Function After Spinal Cord Injury.
Spinal cord injury (SCI) is a devastating condition characterized by impaired motor and sensory function, as well as internal organ pathology and dysfunction. This internal organ dysfunction, particularly gastrointestinal (GI) complications, and neurogenic bowel, can reduce the quality of life of individuals with an SCI and potentially hinder their recovery. The gut microbiome impacts various central nervous system functions and has been linked to a number of health and disease states. An imbalance of the gut microbiome, i.e., gut dysbiosis, contributes to neurological disease and may influence recovery and repair processes after SCI. Here we examine the impact of high cervical SCI on the gut microbiome and find that transient gut dysbiosis with persistent gut pathology develops after SCI. Importantly, probiotic treatment improves gut health and respiratory motor function measured through whole-body plethysmography. Concurrent with these improvements was a systemic decrease in the cytokine tumor necrosis factor-alpha and an increase in neurite sprouting and regenerative potential of neurons. Collectively, these data reveal the gut microbiome as an important therapeutic target to improve visceral organ health and respiratory motor recovery after SCI.
Research highlights: Cervical spinal cord injury (SCI) causes transient gut dysbiosis and persistent gastrointestinal (GI) pathology.Treatment with probiotics after SCI leads to a healthier GI tract and improved respiratory motor recovery.Probiotic treatment decreases systemic tumor necrosis factor-alpha and increases the potential for sprouting and regeneration of neurons after SCI.The gut microbiome is a valid target to improve motor function and secondary visceral health after SCI.
期刊介绍:
Geological Magazine, established in 1864, is one of the oldest and best-known periodicals in earth sciences. It publishes original scientific papers covering the complete spectrum of geological topics, with high quality illustrations. Its worldwide circulation and high production values, combined with Rapid Communications and Book Review sections keep the journal at the forefront of the field.
This journal is included in the Cambridge Journals open access initiative, Cambridge Open Option.