基于企鹅骑手优化算法的深度递归神经网络政治推特数据情感分类

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2022-01-01 DOI:10.4018/ijwsr.299019
Vegi Harendranath, S. Rodda
{"title":"基于企鹅骑手优化算法的深度递归神经网络政治推特数据情感分类","authors":"Vegi Harendranath, S. Rodda","doi":"10.4018/ijwsr.299019","DOIUrl":null,"url":null,"abstract":"This paper proposes an effective and optimal sentiment classification method named Penguin Rider optimization algorithm-based Deep Recurrent Neural Network (PeROA-based Deep RNN) to perform sentiment classification using political reviews. However, the proposed PeROA is developed by incorporating the Penguins Search Optimization Algorithm (PeSOA) with the Rider Optimization Algorithm (ROA). The sentiment classification process is progressed using the Deep RNN classifier, which in turn generate the optimal solution based on the fitness measure. Accordingly, the function with the minimal error value is accepted as the best solution. The sentiment-based features enable the classifier to perform better classification result with respect to the sentiment tweets. However, the proposed PeROA-based Deep RNN obtained better performance using the metrics, like accuracy, sensitivity, specificity, recall, F-measure, thread score, NPV, FPR,FNR and FDR with the values of 92.030%, 92.030%, 92.235%, 92.030%, 92.030%, 92.030%, 92.030%, 3.105%, 3.11%, and 3.105%, respectively.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"36 1","pages":"1-25"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Penguin Rider Optimization Algorithm-Based Deep Recurrent Neural Network for Sentiment Classification of Political Twitter Data\",\"authors\":\"Vegi Harendranath, S. Rodda\",\"doi\":\"10.4018/ijwsr.299019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an effective and optimal sentiment classification method named Penguin Rider optimization algorithm-based Deep Recurrent Neural Network (PeROA-based Deep RNN) to perform sentiment classification using political reviews. However, the proposed PeROA is developed by incorporating the Penguins Search Optimization Algorithm (PeSOA) with the Rider Optimization Algorithm (ROA). The sentiment classification process is progressed using the Deep RNN classifier, which in turn generate the optimal solution based on the fitness measure. Accordingly, the function with the minimal error value is accepted as the best solution. The sentiment-based features enable the classifier to perform better classification result with respect to the sentiment tweets. However, the proposed PeROA-based Deep RNN obtained better performance using the metrics, like accuracy, sensitivity, specificity, recall, F-measure, thread score, NPV, FPR,FNR and FDR with the values of 92.030%, 92.030%, 92.235%, 92.030%, 92.030%, 92.030%, 92.030%, 3.105%, 3.11%, and 3.105%, respectively.\",\"PeriodicalId\":54936,\"journal\":{\"name\":\"International Journal of Web Services Research\",\"volume\":\"36 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Web Services Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijwsr.299019\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.299019","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种有效且最优的情感分类方法——基于企鹅骑手优化算法的深度递归神经网络(PeROA-based Deep RNN),利用政治评论进行情感分类。该算法将企鹅搜索优化算法(PeSOA)与骑手优化算法(ROA)相结合。使用深度RNN分类器进行情感分类过程,然后根据适应度度量生成最优解。因此,接受误差值最小的函数作为最佳解。基于情感的特征使分类器能够对情感推文执行更好的分类结果。然而,基于peroa的深度RNN在准确率、灵敏度、特异性、召回率、F-measure、线程得分、NPV、FPR、FNR和FDR等指标上表现更好,分别为92.030%、92.030%、92.235%、92.030%、92.030%、92.030%、3.105%、3.11%和3.105%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Penguin Rider Optimization Algorithm-Based Deep Recurrent Neural Network for Sentiment Classification of Political Twitter Data
This paper proposes an effective and optimal sentiment classification method named Penguin Rider optimization algorithm-based Deep Recurrent Neural Network (PeROA-based Deep RNN) to perform sentiment classification using political reviews. However, the proposed PeROA is developed by incorporating the Penguins Search Optimization Algorithm (PeSOA) with the Rider Optimization Algorithm (ROA). The sentiment classification process is progressed using the Deep RNN classifier, which in turn generate the optimal solution based on the fitness measure. Accordingly, the function with the minimal error value is accepted as the best solution. The sentiment-based features enable the classifier to perform better classification result with respect to the sentiment tweets. However, the proposed PeROA-based Deep RNN obtained better performance using the metrics, like accuracy, sensitivity, specificity, recall, F-measure, thread score, NPV, FPR,FNR and FDR with the values of 92.030%, 92.030%, 92.235%, 92.030%, 92.030%, 92.030%, 92.030%, 3.105%, 3.11%, and 3.105%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1