{"title":"内径和雷诺数对环形射流再循环区的影响","authors":"M. Habib, Sahnoun Rachid, Drai Ismail","doi":"10.2478/ijame-2022-0021","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we focus on the effect of the inner diameter and Reynolds number on the recirculation zone in an annular jet flow with numerical simulation by resolving the Reynolds-averaged Navier-Stokes equations with the first closed model of turbulence k-epsilon. The annular jet plays an essential role in stabilizing the flame in the burner which is used in many industrial applications. The annular jet is characterized by the inner and outer diameter. In this study, three different inner diameters are adopted with constant width of the annular jet. We adopted also three different values of the Reynolds number show the effect of the Reynolds number on the recirculation zone. The simulation is realized by a CFD code which uses the finite element method. The results obtained from this study are in good agreement with the experimental data. Two recirculation zones are shown; a large recirculation zone at the outlet of the flow and a small recirculation zone just near the injection generated by the annular flow and the inner diameter Di; it is observed that the size of the recirculation zone increases when the inner diameter increases and the length of the recirculation zone depends only on the inner diameter. This recirculation zone is also affected by the Reynolds number with a very low variation of the recirculation length.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"109 1","pages":"87 - 97"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of the Inner Diameter and Reynolds Number on the Recirculation Zone in Annular Jet Flow\",\"authors\":\"M. Habib, Sahnoun Rachid, Drai Ismail\",\"doi\":\"10.2478/ijame-2022-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we focus on the effect of the inner diameter and Reynolds number on the recirculation zone in an annular jet flow with numerical simulation by resolving the Reynolds-averaged Navier-Stokes equations with the first closed model of turbulence k-epsilon. The annular jet plays an essential role in stabilizing the flame in the burner which is used in many industrial applications. The annular jet is characterized by the inner and outer diameter. In this study, three different inner diameters are adopted with constant width of the annular jet. We adopted also three different values of the Reynolds number show the effect of the Reynolds number on the recirculation zone. The simulation is realized by a CFD code which uses the finite element method. The results obtained from this study are in good agreement with the experimental data. Two recirculation zones are shown; a large recirculation zone at the outlet of the flow and a small recirculation zone just near the injection generated by the annular flow and the inner diameter Di; it is observed that the size of the recirculation zone increases when the inner diameter increases and the length of the recirculation zone depends only on the inner diameter. This recirculation zone is also affected by the Reynolds number with a very low variation of the recirculation length.\",\"PeriodicalId\":37871,\"journal\":{\"name\":\"International Journal of Applied Mechanics and Engineering\",\"volume\":\"109 1\",\"pages\":\"87 - 97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ijame-2022-0021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ijame-2022-0021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Effect of the Inner Diameter and Reynolds Number on the Recirculation Zone in Annular Jet Flow
Abstract In this paper, we focus on the effect of the inner diameter and Reynolds number on the recirculation zone in an annular jet flow with numerical simulation by resolving the Reynolds-averaged Navier-Stokes equations with the first closed model of turbulence k-epsilon. The annular jet plays an essential role in stabilizing the flame in the burner which is used in many industrial applications. The annular jet is characterized by the inner and outer diameter. In this study, three different inner diameters are adopted with constant width of the annular jet. We adopted also three different values of the Reynolds number show the effect of the Reynolds number on the recirculation zone. The simulation is realized by a CFD code which uses the finite element method. The results obtained from this study are in good agreement with the experimental data. Two recirculation zones are shown; a large recirculation zone at the outlet of the flow and a small recirculation zone just near the injection generated by the annular flow and the inner diameter Di; it is observed that the size of the recirculation zone increases when the inner diameter increases and the length of the recirculation zone depends only on the inner diameter. This recirculation zone is also affected by the Reynolds number with a very low variation of the recirculation length.
期刊介绍:
INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.