Nemanja Bojanić, Aleksandar Fišteš, T. Došenović, A. Takaci, M. Brdar, K. Yoneda, D. Rakic
{"title":"用反向破碎矩阵法控制铣削过程中尺寸和成分的分布","authors":"Nemanja Bojanić, Aleksandar Fišteš, T. Došenović, A. Takaci, M. Brdar, K. Yoneda, D. Rakic","doi":"10.2298/HEMIND201027004B","DOIUrl":null,"url":null,"abstract":"A method based on the reverse breakage matrix approach is proposed for controlling the effects that milling has on the particle size distribution and composition of the comminuted material. Applicability, possibilities, and limitations of the proposed method are tested on examples related to the process of wheat flour milling. It has been shown that the reverse matrix approach can be successfully used for defining the particle size distribution of the input material leading to the desired, predetermined particle size and compositional distribution in the output material. Moreover, we have illustrated that it is possible to simultaneously control both, input and output particle size distribution, together with the composition of the output material.","PeriodicalId":9933,"journal":{"name":"Chemical Industry","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control of the size and compositional distributions in a milling process by using a reverse breakage matrix approach\",\"authors\":\"Nemanja Bojanić, Aleksandar Fišteš, T. Došenović, A. Takaci, M. Brdar, K. Yoneda, D. Rakic\",\"doi\":\"10.2298/HEMIND201027004B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method based on the reverse breakage matrix approach is proposed for controlling the effects that milling has on the particle size distribution and composition of the comminuted material. Applicability, possibilities, and limitations of the proposed method are tested on examples related to the process of wheat flour milling. It has been shown that the reverse matrix approach can be successfully used for defining the particle size distribution of the input material leading to the desired, predetermined particle size and compositional distribution in the output material. Moreover, we have illustrated that it is possible to simultaneously control both, input and output particle size distribution, together with the composition of the output material.\",\"PeriodicalId\":9933,\"journal\":{\"name\":\"Chemical Industry\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Industry\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.2298/HEMIND201027004B\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Industry","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.2298/HEMIND201027004B","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Control of the size and compositional distributions in a milling process by using a reverse breakage matrix approach
A method based on the reverse breakage matrix approach is proposed for controlling the effects that milling has on the particle size distribution and composition of the comminuted material. Applicability, possibilities, and limitations of the proposed method are tested on examples related to the process of wheat flour milling. It has been shown that the reverse matrix approach can be successfully used for defining the particle size distribution of the input material leading to the desired, predetermined particle size and compositional distribution in the output material. Moreover, we have illustrated that it is possible to simultaneously control both, input and output particle size distribution, together with the composition of the output material.