东格陵兰Jameson陆盆Blokelv-1井上侏罗统深部海相(Hareelv组)沉积学、地球化学及储层特征

Q2 Earth and Planetary Sciences Geological Survey of Denmark and Greenland Bulletin Pub Date : 2018-12-28 DOI:10.34194/geusb.v42.4309
M. Bjerager, C. Kjøller, M. Olivarius, D. Olsen, N. Schovsbo
{"title":"东格陵兰Jameson陆盆Blokelv-1井上侏罗统深部海相(Hareelv组)沉积学、地球化学及储层特征","authors":"M. Bjerager, C. Kjøller, M. Olivarius, D. Olsen, N. Schovsbo","doi":"10.34194/geusb.v42.4309","DOIUrl":null,"url":null,"abstract":"The fully cored Blokelv-1 borehole was drilled through Upper Jurassic strata in the central part of the Jameson Land Basin, central East Greenland. The borehole reached a total depth of 233.8 m with nearly 100% recovery of high-quality core. An extensive analytical programme was undertaken on the core; sedimentological interpretation and reservoir characterisation were based on facies analysis combined with conventional core analysis, bulk geochemistry and spectral gamma and density scanning of the core. The Upper Jurassic Hareelv Formation was deposited in relatively deep water in a slope-to-basin setting where background sedimentation was dominated by suspension settling of organic-rich mud in oxygen-depleted conditions. Low- and high-density gravity-flow sandstone interbeds occur throughout the cored succession. About two-thirds of the high-density turbidite sandstones were remobilised and injected into the surrounding mud-rock. The resulting succession comprises nearly equal amounts of mudstones and sandstones in geometrically complex bodies. Ankerite cementation occurs in 37% of the analysed sandstones in varying amounts from minor to pervasive. Such ankerite-cemented sandstones can be identified by their bulk geochemistry where Ca > 2 wt%, Mg > 1 wt% and C > 1 wt%. The analysed mudstones are rich in Al, Fe, Ti and P and poor in Ca, Mg, Na and Mn. The trace-metal content shows a general increase in the upper part of the core reflecting progressive oxygen depletion at the sea floor. The reservoir properties of the Blokelv-1 sandstones were evaluated by both conventional core analysis and using log-derived porosity and permeability curves. The high-density turbidite beds and injectite bodies are a few centimetres to several metres thick and show large variations in porosity and permeability, in the range of 6–26 % for porosity and 0.05–400 mD for permeability. Individual sandstone units that are 1–7 m thick yield a net vertical reservoir thickness of 40 m with porosities of 15–26% and permeabilities of 1–200 mD. Heterolithic sandstone–mudstone units are generally characterised by poor reservoir quality with porosities of 2–14% and permeabilities of 0.1–0.6 mD.","PeriodicalId":49199,"journal":{"name":"Geological Survey of Denmark and Greenland Bulletin","volume":"109 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Sedimentology, geochemistry and reservoir properties of Upper Jurassic deep marine sediments (Hareelv Formation) in the Blokelv-1 borehole, Jameson Land Basin, East Greenland\",\"authors\":\"M. Bjerager, C. Kjøller, M. Olivarius, D. Olsen, N. Schovsbo\",\"doi\":\"10.34194/geusb.v42.4309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fully cored Blokelv-1 borehole was drilled through Upper Jurassic strata in the central part of the Jameson Land Basin, central East Greenland. The borehole reached a total depth of 233.8 m with nearly 100% recovery of high-quality core. An extensive analytical programme was undertaken on the core; sedimentological interpretation and reservoir characterisation were based on facies analysis combined with conventional core analysis, bulk geochemistry and spectral gamma and density scanning of the core. The Upper Jurassic Hareelv Formation was deposited in relatively deep water in a slope-to-basin setting where background sedimentation was dominated by suspension settling of organic-rich mud in oxygen-depleted conditions. Low- and high-density gravity-flow sandstone interbeds occur throughout the cored succession. About two-thirds of the high-density turbidite sandstones were remobilised and injected into the surrounding mud-rock. The resulting succession comprises nearly equal amounts of mudstones and sandstones in geometrically complex bodies. Ankerite cementation occurs in 37% of the analysed sandstones in varying amounts from minor to pervasive. Such ankerite-cemented sandstones can be identified by their bulk geochemistry where Ca > 2 wt%, Mg > 1 wt% and C > 1 wt%. The analysed mudstones are rich in Al, Fe, Ti and P and poor in Ca, Mg, Na and Mn. The trace-metal content shows a general increase in the upper part of the core reflecting progressive oxygen depletion at the sea floor. The reservoir properties of the Blokelv-1 sandstones were evaluated by both conventional core analysis and using log-derived porosity and permeability curves. The high-density turbidite beds and injectite bodies are a few centimetres to several metres thick and show large variations in porosity and permeability, in the range of 6–26 % for porosity and 0.05–400 mD for permeability. Individual sandstone units that are 1–7 m thick yield a net vertical reservoir thickness of 40 m with porosities of 15–26% and permeabilities of 1–200 mD. Heterolithic sandstone–mudstone units are generally characterised by poor reservoir quality with porosities of 2–14% and permeabilities of 0.1–0.6 mD.\",\"PeriodicalId\":49199,\"journal\":{\"name\":\"Geological Survey of Denmark and Greenland Bulletin\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geological Survey of Denmark and Greenland Bulletin\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34194/geusb.v42.4309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geological Survey of Denmark and Greenland Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34194/geusb.v42.4309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 6

摘要

全取心的Blokelv-1钻孔穿过了东格陵兰中部Jameson Land Basin中部的上侏罗统地层。钻孔总深度233.8 m,优质岩心采收率接近100%。对核心进行了广泛的分析方案;沉积学解释和储层描述是基于相分析、常规岩心分析、整体地球化学、光谱伽马和密度扫描。上侏罗统Hareelv组沉积于相对较深的斜坡-盆地环境中,背景沉积以贫氧条件下富有机质泥的悬浮沉降为主。低密度和高密度的重力流砂岩互层贯穿于整个岩心演替中。大约三分之二的高密度浊积砂岩被重新活化并注入到周围的泥岩中。由此产生的演替包括几何复杂体中数量几乎相等的泥岩和砂岩。在分析的砂岩中,有37%的砂岩发生了从少量到普遍的胶结作用。通过Ca > 2 wt%、Mg > 1 wt%、C > 1 wt%的整体地球化学特征,可以识别出这类铁白云石胶结砂岩。泥岩富Al、Fe、Ti、P,贫Ca、Mg、Na、Mn。微量金属含量在岩心上部普遍增加,反映了海底氧气的逐渐耗竭。通过常规岩心分析和测井推导的孔隙度和渗透率曲线,对Blokelv-1砂岩的储层性质进行了评价。高密度浊积层和注入体厚度为几厘米至几米,孔隙度和渗透率变化较大,孔隙度在6 ~ 26%之间,渗透率在0.05 ~ 400 mD之间。单个砂岩单元厚度为1-7 m,净垂向储层厚度为40 m,孔隙度为15-26%,渗透率为1-200 mD。异质砂岩-泥岩单元的储层质量一般较差,孔隙度为2-14%,渗透率为0.1-0.6 mD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sedimentology, geochemistry and reservoir properties of Upper Jurassic deep marine sediments (Hareelv Formation) in the Blokelv-1 borehole, Jameson Land Basin, East Greenland
The fully cored Blokelv-1 borehole was drilled through Upper Jurassic strata in the central part of the Jameson Land Basin, central East Greenland. The borehole reached a total depth of 233.8 m with nearly 100% recovery of high-quality core. An extensive analytical programme was undertaken on the core; sedimentological interpretation and reservoir characterisation were based on facies analysis combined with conventional core analysis, bulk geochemistry and spectral gamma and density scanning of the core. The Upper Jurassic Hareelv Formation was deposited in relatively deep water in a slope-to-basin setting where background sedimentation was dominated by suspension settling of organic-rich mud in oxygen-depleted conditions. Low- and high-density gravity-flow sandstone interbeds occur throughout the cored succession. About two-thirds of the high-density turbidite sandstones were remobilised and injected into the surrounding mud-rock. The resulting succession comprises nearly equal amounts of mudstones and sandstones in geometrically complex bodies. Ankerite cementation occurs in 37% of the analysed sandstones in varying amounts from minor to pervasive. Such ankerite-cemented sandstones can be identified by their bulk geochemistry where Ca > 2 wt%, Mg > 1 wt% and C > 1 wt%. The analysed mudstones are rich in Al, Fe, Ti and P and poor in Ca, Mg, Na and Mn. The trace-metal content shows a general increase in the upper part of the core reflecting progressive oxygen depletion at the sea floor. The reservoir properties of the Blokelv-1 sandstones were evaluated by both conventional core analysis and using log-derived porosity and permeability curves. The high-density turbidite beds and injectite bodies are a few centimetres to several metres thick and show large variations in porosity and permeability, in the range of 6–26 % for porosity and 0.05–400 mD for permeability. Individual sandstone units that are 1–7 m thick yield a net vertical reservoir thickness of 40 m with porosities of 15–26% and permeabilities of 1–200 mD. Heterolithic sandstone–mudstone units are generally characterised by poor reservoir quality with porosities of 2–14% and permeabilities of 0.1–0.6 mD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: GEUS Bulletin publishes geoscience research papers, monographs and map descriptions with a focus on Denmark, Greenland and the wider North Atlantic and Arctic region. We welcome submissions that fit this remit. Specifically, we publish: 1.Short articles intended as rapid communications that are of immediate interest to the international geoscience community (these include new research, datasets, methods or reviews) 2.Regular-length articles that document new research or a review of a topic of interest 3.Monographs (single volume works, by arrangement with the editorial office) 4.Maps and descriptive texts (produced by GEUS for Greenland and Denmark, by arrangement with the editorial office) GEUS Bulletin serves a broad geoscientific readership from research, industry, government agencies, NGOs and special interest groups.
期刊最新文献
Greenland ice sheet melt area from MODIS (2000–2014) Characterisation of incinerator bottom ash from a Danish waste-to-energy plant: a step towards closing the material cycle Review of Survey activities 2018 Developing multi-sensor drones for geological mapping and mineral exploration: setup and first results from the MULSEDRO project Liverpool Land Basement High, Greenland: visualising inputs for fractured crystalline basement reservoir models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1