{"title":"动力系统集成的最优控制","authors":"Alessandro Scagliotti","doi":"10.1051/cocv/2023011","DOIUrl":null,"url":null,"abstract":"In this paper we consider the problem of the optimal control of an ensemble of affine-control systems. After proving the well-posedness of the minimization problem under examination, we establish a $\\Gamma$-convergence result that allows us to substitute the original (and usually infinite) ensemble with a sequence of finite increasing-in-size sub-ensembles. The solutions of the optimal control problems involving these sub-ensembles provide approximations in the $L^2$-strong topology of the minimizers of the original problem. Using again a $\\Gamma$-convergence argument, we manage to derive a Maximum Principle for ensemble optimal control problems with end-point cost. Moreover, in the case of finite sub-ensembles, we can address the minimization of the related cost through numerical schemes. In particular, we propose an algorithm that consists of a subspace projection of the gradient field induced on the space of admissible controls by the approximating cost functional. In addition, we consider an iterative method based on the Pontryagin Maximum Principle. Finally, we test the algorithms on an ensemble of linear systems in $\\mathbb{R}^2$.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":"72 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimal control of ensembles of dynamical systems\",\"authors\":\"Alessandro Scagliotti\",\"doi\":\"10.1051/cocv/2023011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the problem of the optimal control of an ensemble of affine-control systems. After proving the well-posedness of the minimization problem under examination, we establish a $\\\\Gamma$-convergence result that allows us to substitute the original (and usually infinite) ensemble with a sequence of finite increasing-in-size sub-ensembles. The solutions of the optimal control problems involving these sub-ensembles provide approximations in the $L^2$-strong topology of the minimizers of the original problem. Using again a $\\\\Gamma$-convergence argument, we manage to derive a Maximum Principle for ensemble optimal control problems with end-point cost. Moreover, in the case of finite sub-ensembles, we can address the minimization of the related cost through numerical schemes. In particular, we propose an algorithm that consists of a subspace projection of the gradient field induced on the space of admissible controls by the approximating cost functional. In addition, we consider an iterative method based on the Pontryagin Maximum Principle. Finally, we test the algorithms on an ensemble of linear systems in $\\\\mathbb{R}^2$.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2023011\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2023011","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
In this paper we consider the problem of the optimal control of an ensemble of affine-control systems. After proving the well-posedness of the minimization problem under examination, we establish a $\Gamma$-convergence result that allows us to substitute the original (and usually infinite) ensemble with a sequence of finite increasing-in-size sub-ensembles. The solutions of the optimal control problems involving these sub-ensembles provide approximations in the $L^2$-strong topology of the minimizers of the original problem. Using again a $\Gamma$-convergence argument, we manage to derive a Maximum Principle for ensemble optimal control problems with end-point cost. Moreover, in the case of finite sub-ensembles, we can address the minimization of the related cost through numerical schemes. In particular, we propose an algorithm that consists of a subspace projection of the gradient field induced on the space of admissible controls by the approximating cost functional. In addition, we consider an iterative method based on the Pontryagin Maximum Principle. Finally, we test the algorithms on an ensemble of linear systems in $\mathbb{R}^2$.
期刊介绍:
ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations.
Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines.
Targeted topics include:
in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory;
in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis;
in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.